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This article is an amplification with illustrations of a write-up of my talk
at the University Mathematics Teaching Conference at Sheffield Hallam
University, 7 September 1999 [Singmaster 2000].

That talk was based on earlier talks that I had given on this topic,
notably at the European Congress of Mathematicians in 1992 [Singmas-
ter 1992; 1996]. Some topics discussed there were skipped in my talk at
Sheffield, and some brief remarks on a few topics not mentioned at Sheffield
were added in the write-up of that talk [Singmaster 2000]. I have now com-
bined the material from all of these talks into the following, accompanied
by suitable images.

Les hommes ne sont jamais plus ingénieux que dans l’invention
des jeux.

[Men are never more ingenious than in inventing games.]
—Leibniz to De Montmort, 29 Jul 1715.

Amusement is one of the fields of applied mathematics.
—William F. White, A Scrap-Book of Elementary Mathemat-
ics, 1908.
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4 The Utility of Recreational Mathematics

. . . [I]t is necessary to begin the Instruction of Youth with
the Languages and Mathematicks. These should . . . be taught
to-gether, the Languages and Classicks as . . . Business and the
Mathematicks as . . . Diversion.
—Samuel Johnson, first President of Columbia University, in
1731.

Introduction

My title is a variation on Eugene Wigner’s famous essay “The unreason-
able effectiveness of mathematics in the physical sciences” [1960]. Like
Wigner, I originally had “unreasonable” in my title and did not come up
with any explanation, but I believe that I have an explanation that makes
it reasonable. But first let me describe the background and illustrate the
situation. For about 25 years, I have been working to find sources of clas-
sical problems in recreational mathematics. This has led to an annotated
bibliography/history of the subject [Singmaster 2013], now covering about
470 topics on almost 1,000 pp, where you can find more details about the
topics discussed in this article.

The Nature of Recreational Mathematics

To begin with, it is worth considering what is meant by recreational math-
ematics. An obvious definition is that it is mathematics that is fun. How-
ever, almost any mathematician enjoys the work, even in studying eigen-
values of elliptic differential operators; so this definition would encompass
almost all mathematics and hence is too general. There are two, somewhat
overlapping, definitions that cover most of what is meant by recreational
mathematics.

• Recreational mathematics is mathematics that is fun and popular—
that is, the problems should be understandable to the interested lay
person, though the solutions may be harder. (However, if the solution
is too hard, this may shift the topic from recreational toward the
serious—e.g. Fermat’s Last Theorem, the Four Colour Theorem or
the Mandelbrot Set.)

• Recreational mathematics is mathematics that is fun and used peda-
gogically either as a diversion from serious mathematics or as a way
of making serious mathematics understandable or palatable. These
pedagogic uses of recreational mathematics are already present in the
oldest known mathematics and continue to the present day.
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David Singmaster 5

In both cases, the fun aspect is often accentuated by posing the problem
in a context that is illegal, immoral, or politically incorrect (for one or
more reasons), as well as being highly unlikely or even downright impos-
sible. This whimsey is actually important, in that it makes the problem
memorable; and the artificiality often eliminates unnecessary complications
that tend to occur in reality. Further, the problem may be illustrated or
even encapsulated in a physical object that one can see and touch—I am
particularly fond of such problems and will cite several examples below.

Mathematical recreations are as old as mathematics itself, and we will
later see some prehistoric examples. The earliest piece of Egyptian math-
ematics, the Rhind Papyrus of ca. −1800, has a problem (No. 79) where
there are 7 houses, each house has 7 cats, each cat ate 7 mice, each mouse
would have eaten 7 ears of spelt (a kind of wheat), and each ear of spelt
would produce 7 hekat (a unit of volume) of spelt. Then 7 + 49 + 343 +
2401 + 16807 is computed. A similar problem of adding powers of 7 occurs
in Fibonacci (1202) [Sigler 2002], in a few later medieval texts, and in the
children’s riddle rhyme “As I was going to St. Ives.” Despite the gaps in
the history, it is tempting to believe that “St. Ives” is a descendant from
the ancient Egyptians. Though there is some question as to whether this
problem is really a fanciful exercise in summing a geometric progression,
it has no connection with other problems in the papyrus and seems to be
inserted as a diversion or recreation. (See Figures 1–3.)

Figure 1: Rhind papyrus No. 79.

The earliest mathematical works from Babylonia also date from about
−1800 and they include such problems as the following on AO 8862 (see
Figure 4).

“I know the length plus the width of a rectangle is 27, while
the area plus the difference of the length and the width is 183.
Find the length and width.”
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6 The Utility of Recreational Mathematics

Figure 2: Extract from Fibonacci’s Liber abbaci.

By no stretch of the imagination can this be considered a practical
problem! Rather it is a way of presenting two equations in two unknowns,
leading to a quadratic equation, in an effort to make solving the latter more
interesting for the student.

These two aspects of recreational mathematics—the popular and the
pedagogic—overlap considerably, and there is no clear boundary between
them and “serious” mathematics. In addition, there are several other in-
dependent fields that contain much recreational mathematics: games; me-
chanical puzzles; magic; art.

Games of chance and games of strategy also seem to be about as old as
human civilization. The mathematics of games of chance began in the Mid-
dle Ages, and its development by Fermat and Pascal in the 1650s rapidly
led to probability theory. Insurance companies based on this theory were
founded in the mid-18th century. The mathematics of games of strategy
started only about the beginning of the 20th century, but soon developed
into game theory, both of the von Neumann-Morgenstern type and later of
the Conway type.

Mechanical puzzles range widely in mathematical content. Some only
require a certain amount of dexterity and three-dimensional ability; oth-
ers require ingenuity and logical thought; while others require systematic
application of mathematical ideas or patterns, such as Rubik’s Cube, the
Chinese Rings, the Tower of Hanoi, and Rubik’s Clock.

Much magic has a mathematical basis that the magician uses but care-
fully conceals—e.g., the fact that the opposite faces of a die add up to 7;
binary divination; the fact that the period of a perfect (faro or riffle) shuffle
of a 52-card pack of cards is 8.
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Figure 3: Postcards illustrating the St. Ives children’s riddle rhyme.

The creation of beauty often leads to questions of symmetry and geom-
etry that are studied for their own sake—e.g., the carved stone balls that
we will see later.

This outlines the conventional scope of recreational mathematics, but
there is some variation due to personal taste.
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8 The Utility of Recreational Mathematics

VUE D'ASSYRIOLOGIE XXIX 

AO 8862. Face I. 

This content downloaded from 144.89.40.8 on Sat, 13 Dec 2014 15:57:48 PM
All use subject to JSTOR Terms and Conditions

Figure 4: Babylonian tablet AO 8862, Face I, in the Louvre. Reproduced
full size in print version of this issue of The UMAP Journal. Source:
Thureau-Dangin [1932, Plate I].

The Utility of Recreational Mathematics

How is recreational mathematics useful?

• Recreational problems are often the basis of serious math-
ematics. The most obvious fields are probability and graph theory,
where popular problems have been a major (or even dominant) stim-
ulus to the creation and evolution of the subject. Further reflection
shows that number theory, topology, geometry, and algebra have all
been strongly stimulated by recreational problems. (Though geom-
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etry has its origins in practical surveying, the Greeks treated it as
an intellectual game; and much of their work must be considered as
recreational in nature, even though they viewed it more seriously, as
reflecting the nature of the world. From the time of the Babyloni-
ans, algebraists tried to solve cubic equations, though they had no
practical problems that led to cubics.) There are even recreational
aspects of calculus—e.g., the many curves studied since the 16th cen-
tury. Consequently, the study of recreational topics is necessary to
understanding the history of many, perhaps most, topics in mathe-
matics.

Before Aristotle, the Greeks used logic as a game of forcing an oppo-
nent to accept your conclusions, but had never formalized the rules.
Aristotle began the study of logic in order to formalize the rules of
this game.

• Recreational mathematics has frequently turned up ideas of
genuine but non-obvious utility. I will mention a few examples
later.

Such unusual developments, and the more straightforward develop-
ments of the previous point, demonstrate the historical principle of
“The (unreasonable) utility of recreational mathematics.” This and
similar ideas are the historical and social justification of mathemati-
cal research in general and for the study of recreational mathematics,
and I will return to this point later.

• Recreational mathematics has great pedagogic utility, and
this will be the main theme of my examples.

• Recreational mathematics is very useful to the historian of
mathematics. Recreational problems often are of great age and usu-
ally can be clearly recognised; they serve as useful historical markers,
tracing the development and transmission of mathematics (and cul-
ture in general) in place and time. The Chinese Remainder Theorem,
magic squares, the Cistern Problem, and the Hundred Fowls Problem
are excellent examples of this process.

The original Hundred Fowls Problem, from 5th century
China, has a man buying 100 fowls for 100 cash (an old
coin). Roosters cost 5, hens 3, and chicks are 3 for a cash—
how many of each did he buy?

The number of topics that have their origins in China or India is
surprising and emphasises our increasing realisation that modern al-
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10 The Utility of Recreational Mathematics

gebra and arithmetic derive more from Babylonia, China, India, and
the Arabs than from Greece.

Some Examples of Useful Recreational Mathemat-
ics

I outline examples to show how recreational mathematics has been useful.
(I stretch “recreational” a bit to include some other non-practical topics.)

From Gambling Bets to the Insurance Industry

The theory of probability and statistics grew from the analysis of gambling
bets to the basis of the insurance industry in the 17th and 18th centuries.

Much of combinatorics likewise has its roots in gambling problems. The
theory of Latin squares began as a recreation but has become an important
technique in experimental design (and then returned again in connection
with Sudoku puzzles).

From Euclid to the Moon and to Buckyballs

Greek geometry, though it had some basis in surveying, was largely an
intellectual exercise, pursued for its own sake. The conic sections were
developed with no purpose in mind, but 2000 years later turned out to
be just what Kepler and Newton needed and were what took men to the
Moon.

The regular, quasi-regular, and Archimedean polyhedra were developed
long before they became the basis of molecular structures. Indeed, the reg-
ular solids are now known to be prehistoric. Beginning in 1985, chemists
became excited about fullerenes, molecules of carbon in various polyhedral
shapes, of which the archetype is the truncated icosahedron, with 60 car-
bon atoms at the vertices, named buckminsterfullerene after Buckminster
Fuller (1895–1983), a proponent of geodesic domes. Spherical fullerenes
are consequently nicknamed “buckyballs” (see Figure 5). Such molecules
apparently are the basis for the formation of soot particles in the air. The
idea of making such molecules seems to have originated with David Jones,
the scientific humorist who writes as “Daedalus,” in one of his humour
columns. Chemists have also synthesized hydrocarbons in the shapes of a
cube (cubane, C8H8, in 1964) and a dodecahedron (dodecahedrane, C20H20,
in 1982).

Proceedings of Recreational Mathematics Colloquium v - G4G (Europe), pp. 3–46



David Singmaster 11

From Non-Euclidean Geometry to Geometry of Physical Space

Non-euclidean geometry was developed long before Einstein considered it
as a possible geometry for space.

Figure 5: Frame of a truncated icosahedron buckyball, C60, illustrated in
the Ambrosiana manuscript of Luca Pacioli’s De divina proportione (1509)
by Leonardo da Vinci. Plate XXIIII, folio 103 recto. Source: Veneranda
Biblioteca Ambrosiana, DeAgostini Picture Library, Scala, Florence.

From River-Crossing Puzzles to Graph Theory

The river-crossing problems and the problem of getting camels across a
desert, which occur in Alcuin, ca. 800, are considered to be the earliest
combinatorial optimization problems. Such problems are now solved by
graph-theoretic methods, dynamic programming, or integer programming.

The problem of the Seven Bridges of Königsberg (Figure 6), mazes,
knight’s tours, and circuits on the dodecahedron (the Icosian Game) (Fig-
ures 7 and 8) were major sources of graph theory and are the basis of
major fields of optimization, leading to one of the major unsolved problems
of the century: Does P = NP? The routes of postmen, streetsweepers and
snowplows, as well as those of salesmen, are worked out by these meth-
ods. Further, Hamilton’s thoughts on the Icosian Game led him to the first
presentation of a group by generators and relations (Figure 9).
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12 The Utility of Recreational Mathematics

Figure 6: Coloured map of the city of Königsberg ca. 1641, showing the
seven bridges featured in the problem solved by Euler. Copper engrav-
ing by Matthäus Merian the Elder or Merian Erben (his sons); colourizer
unknown. Source for uncoloured engraving: Zeiller [1652].

From Number Theory to Splicing Phone Cables

Number theory is another of the fields where recreations have been a major
source of problems, and these problems have been a major source for mod-
ern algebra. Fermat’s Last Theorem led to Kummer’s invention of ideals
and most of algebraic number theory. There was a famous application of
primitive roots to the splicing of telephone cables to minimize interference
and crosstalk [Rosen 1984, 280–286; 2005, 397–399]. Primality and factor-
ization were traditionally innocuous recreational pastimes; but since 1978
when Rivest, Shamir, and Adleman introduced their method of public-key
cryptography (now known as RSA cryptography), my friends in this field
get rung up by reporters wanting to know if the national security is threat-
ened because someone has factored a large number. The factorization of a
big number or the determination of the next Mersenne prime are generally
front-page news now.

From Buying a Horse to Negative Numbers

A major impetus for algebra has been the solving of equations. The Baby-
lonians already gave quadratic problems where the area of a rectangle was
added to the difference between the length and the width. This clearly
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THE ICOSIAN GAME. 
-· .. 

. Entered 

at agreeably to. 

Stationers' llall. Aat V. & VI. Vio. oap. 100.· 

. ~ ~-- ' 
Iii this new Gu.me (invontcd Ly Sir WILLIAM Row.AN IlAMJLTOlf, LL.D., &c., of Dublin, · and· · 
by him named lco:rian, from a Greek word signifying "twenty'') a player is to place· the · '. 
whole or part of a set of twenty numbered pieces or men upon the points Qr in the· holes · 
of a board, represented by the diagram above dl'll.wn, in such u. inanner as always to proeeed 
aloog tke h"nes of the figure, and also to fulfil certl).in other conditions, which may in various, .. 
ways be assigned by another player. Ingenuity and skill may thus be exerci.tled in propon11g as 
well as in resob1iug problems of the game. For example, the first qf the two pla.yere may place 
the fint five pieces Ill any nve consecutive holes, and then req_uire the second player to place 
the remaining fifteen men consecutively in such ! manner that the succession may Le cyclical, 
th~t is, eo that No. 20 may be adjacent to No. I; and it is always possible to .answer nny question ' 
of this kind. Thu_s, if B 0 D F G- be the five given initial points, it is allowed ·to complete 

the succession by following the alphabetical order of the twenty consonants, as suggested by 
the 4iagram itself; hut after placing the piece No. 6 in tl1e hole H, as befo:rc, it is alao allowed 
(by the supposed copdltions) to put Nu. i in X instcatl of J, and then to conclude with the 
succession, WU ST V..J I{ L ~I N· P Q Z. Other Examples of Icosian Problems, with solu-
tions of some of them, will be found in the following page. - - · · . 

LONDON: 

Jl{)]3L~SHED AKD SOLD \Vlf OJ,f,SALE B.Y JOHN JAQUES AND SON, 102 HA'l'l10N GARDEN; 
A.XD TO BE HAD AT MOST OF Tilll LHAD!NG PANCY R~POi!ITOiUEB 

THROUGHOUT THE KtNGDOll. 

Figure 7: Advertisement with instructions for Hamilton’s Icosian Game.
Only four original boards of the plane version are known to exist.
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14 The Utility of Recreational Mathematics

Figure 8: The only known remaining instance of the Traveller’s Do-
decahedron, a revision by Hamilton of his Icosian game with simpler
rules. The 30 edges on the head represent roads to use to visit
20 ivory pegs that represent cities. “Two travellers set off visiting
4 neighbouring towns. One returns home and the other contin-
ues to travel around the world trying to visit all the remaining
cities once only.” Photo courtesy of James Dalgety. ©Copyright
2013 Hordern-Dalgety Collection. http://puzzlemuseum.com,
http://puzzlemuseum.com/month/picm02/200207icosian.htm.
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415 

years and experience in this errantry, they purchase their free 
dom by some tryall of skill in yr faculty wch they perforrn in 
publick before ye Majistrates of ye place, wv is testifyed by 
an instrument under ye seale of ye magistracy. I believe if 
we should deny freedom to all such as leave yr own country 
and come to plant among us, we should doe ym noe injury, 

for none of ym having undergone this tryall, they would be 
noe better yf journeymen at home, but by our naturall civility 
for strangers has our law run more in yr favor.' 

Sir William Rowan Hamilton read a Paper on a new 

System of Roots of Unity, and of operations therewith con 
nected: to which system of symbols and operations, in conse 
quence of the geometrical character of some of their leading 
interpretations, he is disposed to give the name of the cc Ico 
SIAN CALCULUS." 

This Calculus agrees with that of the Quaternions, in 
three important respects: namely, 1st, that its three chief 
symbols, X, K, A, are (as above suggested) roots of unity, as 
i, j, A are certain fourth roots thereof: 2nd, that these new 
roots obey the associative law of multiplication; and 3rd, that 
they are not subject to the commutative law, or that their 
places as factors must not in general be altered in a product. 

And it differs from the Quaternion Calculus, 1st, by involv 
ing roots with different exponents; and 2ndly, by not re 
quiring (so far as yet appears) the distributive property of 
multiplication. In fact, + and -, in these new calculations, 

enter only as connecting exponents, and not as connecting terms: 
indeed, no terms, or in other words, no polynomes, nor even 

binomes, have hitherto presented themselves, in these late 
researches of the author. As regards the exponents of the 
new roots, it may be mentioned that in the principal system, 

for the new Calculus involves a family of systems,-there are 
adopted the equations,_ 

I = =2 A,C3 A = X5 (A) 

VOL. VI. 2 Q 

This content downloaded from 144.89.40.8 on Sat, 13 Dec 2014 18:37:03 PM
All use subject to JSTOR Terms and Conditions

416 

so that we deal, in it, with a new square root, cube root, and 
ifth root, of positive unity; the latter root being the product 
of the two former, when taken in an order assigned, but not 
in the opposite order. From these simple assumptions (A), a 
long train of consistent calculations opens itself out, for every 
result of which there is found a corresponding geometrical 
interpretation, in the theory of two of the celebrated solids of 
antiquity, alluded to with interest by Plato in the Tima3us; 
namely, the Icosaedron, and the Dodecaedron: whereof the 
angles may now be unequal. By making 4- = 1, the author 
obtains other symbolical results, which are interpreted by the 
Octaedron and the Hexaedron. The Pyramid is, in this 
theory, almost too simple to be interesting: but it is dealt 
with by the assumption, A3 = 1, the other equations (A) being 
untouched. As one fundamental result of those equations 
(A), which may serve as a slight specimen of the rest, it 
is found that if we nmake tuc p, we shall have 

I, p = 1 XA X, = 

so that this new fifth root , has relations of perfect reciprocity 
with the former fifth root A. But there exist more general 
results, including this, and others, on which Sir W. R. HI. 
hopes to be allowed to make a future communication to the 

Academy: as also on some applications of the principles 
already stated, or alluded to, which appear to be in some 

degree interesting. 

The following donations were presented: 
1. By Corry Connellan, Esq.: -A copy of Sir Martin A. 

Shee's portrait of the late Thomas Moore, Esq. 
2. By Edward Bewley, NI. D. :-An autograph letter of 

Dr. Charles Lucas, of which the following is a copy: 
"By this time, I may congratulate my worthy, honest 

friend, first, on his safe arrival with his fair convoy and then, 
on their kind reception and assured success, in Dublin. I am 

This content downloaded from 144.89.40.8 on Sat, 13 Dec 2014 18:37:03 PM
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Figure 9: Hamilton’s mathematics inspired by the Icosian Game, as pre-
sented by him in Proceedings of the Royal Irish Academy 6 (1858) 415–416.
Communicated November 10, 1856. Hamilton’s collected papers notes that
“[t]his is the substance of a letter written on 27 October 1856 to the Rev.
Charles Graves, D.D.” (The Mathematical Papers of Sir William Rowan
Hamilton, Volume III: Algebra, edited by H. Halberstam and R.E. Ingram,
609. New York: Cambridge University Press, 1967.)

had no practical significance. Similar impractical problems led to cubic
equations and the eventual solution of the cubic. Negative solutions first
become common in medieval puzzle problems about men buying a horse or
finding a purse.

Galois fields and even polynomials over them are now standard tools
for cryptographers.

Recreational Curves to Analysis

Even in analysis, the study of curves (e.g., the cycloid) had some recre-
ational motivation.

From Knots to DNA

Topology has much of its origins in recreational aspects of curves and sur-
faces. Knots, another field once generally considered of no possible use, are
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16 The Utility of Recreational Mathematics

now of great interest to molecular biologists who have discovered that DNA
molecules form into closed chains which may be knotted, or not knotted.

The Möbius strip arose about 1858 in work by both August Ferdi-
nand Möbius (1790–1868) and Johann Benedict Listing (1808–1882), List-
ing being apparently a bit earlier. Depictions of it occur in Roman mosaics
(Figure 10, noticed by Charles Seife in 2002), including a strip with five
half-turns (Figure 11) [Larison 1973]. These two examples, together with
other examples of “early” Möbius strips, are discussed in Cartwright and
González [2016].

Figure 10: Möbius strip in detail from a floor mosaic from a Roman villa
near Sentinum (now Sassoferrato, Umbria), ca. 200 A.D., now in the Glyp-
tothek in Munich, Germany. Depicted is Aion, god of Eternity, surrounded
by a zodiac wheel, with earth mother Tellus seated. Source: Photograph
in the public domain by Bibi Saint-Pol.

By 1890, the Möbius strip was being used as a magic trick, magic being
another application of mathematics; indeed, some people view all mathe-
matics as magic! More recently, such strips have served as the basis for
works by M.C. Escher, art being yet another application of mathematics.

The Möbius strip has also been patented several times! e.g., as a single-
sided conveyor belt that has double the wearing surface (Figure 12).

There are a number of other practical uses for the Möbius strip, but
the most unusual is as a non-inductive electrical resistor (Figure 13).

None of the patents that I have seen make any reference to any previous
occurrence of the concept. Martin Gardner says it has also been patented
as a non-inductive resistor. Those who still have dot-matrix printers may
(or may not) know that printer ribbons commonly have a twist (so they
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!
Figure 11: Möbius strip with five half-turns in a Roman floor mosaic of
Orpheus charming the animals, ca. 200 A.D., now in the Museum of Pagan
Art, Arles, France. Source: Detail from Finoskov, Creative Commons (CC
BY SA-3.0), Wikimedia Commons.

are Möbius strips!) in order to allow the printer to use both edges. I first
discovered this when I found one of our technicians trying to put such a
ribbon back into its cartridge; he had done it several times, but it kept
coming out twisted, which he thought was his mistake!

From Chinese Rings to Binary Codes

Gray Codes

The Chinese Rings puzzle (Figure 14), known as bagenaudier (“time-waster”)
in French, may indeed have originated in China 1,800 years ago.

In combinatorics, the pattern of solution of the Chinese Rings puzzle is
the binary coding known as the Gray code, patented as an error-minimising
code by Frank Gray (1887–1969) of Bell Labs in 1953 (Figure 15) and al-
ready used in the same way by Émile Baudot (1845–1903) in the 1870s
[Baudot 1879] in inventing the predecessor of the teletype (it is from Bau-
dot’s code that the term “baud” arose as a measure of transmission speed).

Chain Codes

Another binary coding, sometimes called a chain code, was used by Sanskrit
poets in about 1000 to memorise all the combinations of long and short
syllables [Stein 1961; 1976]. The 10 syllables in the Sanskrit nonsense word

ya-mā-tā-rā-ja-bhā-na-sa-la-gām

contain in successive groups of three all the triplets of long beats (marked
with a bar over the a) and short beats (unmarked a). Moreover, since the
last two syllables are the same as the first two, if we regard the sequence
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18 The Utility of Recreational Mathematics

Figure 12: Image from a patent for a single-sided conveyor belt.
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Figure 13: Patent for use of a Möbius strip as a non-inductive electrical
resistor, by Richard L. Davis, granted in 1966. U.S. Patent 32674906 A.
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20 The Utility of Recreational Mathematics

Figure 14: Chinese Rings puzzles. The task is to remove all the rings.
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Figure 15: Figures from Gray’s patent for pulse code communication.

of syllables as wrapping around, we could arrange the syllables in the form
of a wheel.

Baudot redesigned his printing telegraph to use a chain code [Heath
1961, 540; 1972, 83; Baudot 1895]. The idea of a chain code led to the
more general mathematical concept of a de Bruijn sequence [Gurudev 2007;
Diaconis and Graham 2012, 42–60]. In a de Bruijn sequence, every possible
subsequence of a prescribed length from an alphabet of characters appears
exactly once in the sequence, which like a memory wheel cycles back on
itself. For example, the de Bruijn sequence

0 0 0 1 0 1 1 1
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22 The Utility of Recreational Mathematics

contains in order all the different subsequences of length 3:

000, 001, 010, 101, 011, 111, 110, 100.

Such codes are painted on factory and warehouse floors to enable robots
to determine where they are by scanning a small section of the floor. They
have also been used as the basis of card tricks—divinations—where the
values of cards are determined from a small amount of information [Diaconis
and Graham, 25–29, 42–60]. Diaconis and Graham note some confusion of
Gray codes and chain codes:

[Magicians] mistakenly call de Bruijn sequences “Gray codes.”
. . . But as far as we know, there has never been a single use [of
Gray codes] in magic. [Diaconis and Graham 2012, 25]

The earliest mention of what later became known as chain codes and de
Bruijn sequences seems to be by Flye Saint-Marie [1894], though Baudot’s
use of it for a teleprinter dates from about 1882, with equipment using it
exhibited in 1889 [Heath 1961, 540; 1972, 83]. Kerr [1961] offers in brief
some mechanical details of a production teletype machine that used a chain
code.

Examples of Recreational Mathematics with Ob-
jects

Several of these examples are based on objects that I passed around at the
lectures.

Neolithic Polyhedra

These “carved stone balls” date from ca. −2500, and occur in eastern Scot-
land. Examples are in the Royal Scottish, Ashmolean, Dundee, and Ab-
erdeen Museums. Figure 16 shows a resin model of a carved stome ball
from Aberdeenshire, made by an artist in Glastonbury. No one knows the
purpose of these.

Plimpton 322, ca. −1800

This is the famous Old Babylonian tablet listing Pythagorean triples. Some
years ago I persuaded Columbia University to make casts from the original,
and Figure 17 is a photograph of one of those.
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Figure 16: A resin model of a neolithic carved stone ball (about 9 cm
across).

Figure 17: Facsimile of the Old Babylonian tablet Plimpton 322 that lists
Pythagorean triples.
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Roman Dodecahedron, ca. 200–400

Approximately 100 of these are known, from Roman sites north of the Alps.
The one shown in Figure 18 was found in 1939 in Tongeren, Belgium, and
dates to 150-400 A.D. [Huylenbrouck 2012]. Its total height is 81 mm; the
height without the balls at the corners is 66 mm. I have seen a some-
what smaller example at the Hunt Museum in Limerick. No one knows
their purpose [Guggenheim 2013]. Nevertheless, they admirably match the
description of Hamilton’s Traveller’s Dodecahedron of Figure 8 on p. 14.

Figure 18: Roman dodecahedron found at Tongeren, Belgium, in 1939
and now situated in the Gallo-Roman Museum Tongeren. Reproduced
full size in print version of this issue of The UMAP Journal. Photo by
Guido Schalenbourg, ©Gallo-Roman Museum Tongeren, with thanks to
Else Hartoch, Collection Management Coordinator / Research.

Chinese Magic Square

The cast-iron facsimile in Figure 19 (cast at reduced size) is one of the five
cast-iron examples of a 6× 6 magic square excavated near Xi’an, China, in
1956. It is inscribed in East Arabic numerals (similar to those still used in
the Middle East) and dates to the Yuan Dynasty (1280–1368) [Li and Du
1987, 172].

Examples of Medieval Problems

Fibonacci Numbers

Figure 20 shows a page from the manuscript ca. 1275 at Siena of Fibonacci’s
Liber abbaci of 1202 and 1228. This manuscript, which also includes his
hand signs for numbers (Figure 21), is apparently the earliest known extant
version of his book. The page shows the Fibonacci sequence 1, 2, 3, 5, . . .
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Figure 19: Cast-iron facsimile of a Chinese magic square dating to the Yuan
Dynasty (1280–1368).

377, where each entry is the sum of the two preceding. Fibonacci introduced
the sequence in connection with a fanciful model for the number of rabbit
pairs in successive generations.

The Fibonacci numbers were known to ancient Sanskrit poets, from an
uncertain date about 2000 years ago. The number of different patterns of
fixed length of long syllables and short syllables, where a long syllable is
twice as long as a short syllable, is a Fibonacci number. For example, the
patterns with total length the equivalent of 4 short syllables are LL, SSL,
SLS, LSS, and SSSS, for a total of 5. However, the first Indian work in
which mathematical investigation was made of such numbers was not until
1356, where they were related to binomial coefficients [Singh 1985; Knuth
2011, 47ff].

The Josephus Problem

This is the problem of recursively counting out every k-th person from a
circle of n people. Early versions counted out half the group (see Figure 22);
later authors and the Japanese are interested in the last man—the survivor.
Euler (1775) seems to be the first to ask for the last man in general. Cardan
(1539) is the first to associate this process with Josephus; some later authors
derive this from the Roman practice of decimation.

According to Josephus’s account of the siege of Yodfat (in the
First Jewish War against the Romans, in 66–73), he and his 40
soldiers were trapped in a cave, the exit of which was blocked
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Figure 20: Earliest known presentation of the Fibonacci sequence of num-
bers, in Fibonacci’s Liber abbaci (ca. 1275).
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Figure 21: Fibonacci’s version of Roman hand signs for numerals.
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Figure 22: Calandri’s version of the Josephus problem, with 15 each of Fran-
ciscans (in brown) and Camoldensians (in white) on a boat, and counted
out by k = 9. Where should the standing monk start counting by 9, and
in which direction, so that all the white-robed monks are counted out?
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by Romans. They chose suicide over capture and decided that
they would form a circle and start killing themselves using a
step of three. Josephus states that by luck or possibly by the
hand of God, he and another man remained the last and gave
up to the Romans. —Wikipedia [2014b]

However, Josephus’s own account does not mention a step of three, only
drawing of lots [Josephus ca. 75].

Right-Triangle Problems

Right-triangle problems date back to Old Babylonian (−1800), Chinese
(ca. −150?), and Indian sources. The Indians include Bhaskara I (629), Ma-
havira (850), Chaturveda’s 860 commentary on Brahmagupta, and Bhaskara
II (1150).

The Sliding Spear

The Sliding Spear (= Leaning Reed) Problem goes back to Old Babylonian
times (Figure 23).

d

h

h

b

d

h

b

b

h – d h – d

h

SLIDING SPEAR LEANING REED

2 + (h – d)2 = h2 b2 + (h – d)2 = h2

b.a.

Figure 23: Diagrams of the Sliding Spear Problem and Leaning Reed Prob-
lem.

The Broken Tree Problem

The Broken Tree (or Bamboo) (= Hawk and Rat = Peacock and Serpent)
Problem goes back to a Chinese source:
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A bamboo (or tree) of height H breaks at height X from the
ground so that the broken part reaches from the break to the
ground at distance D from the foot of the bamboo; H and D
are given and X is sought.

The Two Towers Problem

The Two Towers Problem goes back to Bhaskara I (629), who attributes it
to earlier writers! In ca. 1370, dell’Abbaco introduces the following varia-
tion:

Given two towers of heights H1 and H2, situated a distance D
apart with a rope of length L between the tower tops. How high
H from the ground does a sliding weight on the rope hang—or
does it reach to the ground?? (See Figure 24.)

Dell’Abbaco gives: H1 = 60, H2 = 40, D = 40, L = 110, and claims
H = 0.

A general solution can be tedious; but if one finds the solution by brute
force, the form of the solution shows that it is easy to find!

River-Crossing Problems

The Propositiones ad acuendos juvenes, attributed to Alcuin of York, ca. 800,
contains two classic river-crossing problems: wolf, goat, and cabbage; and
the three couples.

Wolf, Goat, Cabbage Problem

In the first, a farmer must transport a wolf, a goat, and a cabbage across
the river in a boat that can hold only the farmer and one other item; the
restrictions are that the wolf cannot be left on either bank with the goat, nor
the goat with the cabbage, unaccompanied by the farmer. (See Figure 25.).

Three Couples Problem

In the three couples (or “jealous husbands”) problem, three married couples
must cross the river in a boat that can hold only at most two people; the
constraint is that no wife can be in the boat or on either bank unless her
husband is present.
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Figure 24: The Two Towers Problem in Pietro Paolo Muscarello’s Algoris-
mus MS of 1478.
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Figure 25: Wolf-goat-grain puzzle from Columbia Algorism, anonymous
Italian MS, ca. 1350 [Vogel 1977, 130–131, 191; Cowley 1923, 402 and plate
opposite].

Modern Combinatorial Optimization

The problems above are among the earliest combinatorial optimization
problems. Martin Grötschel in Berlin uses the wolf-goat-cabbage prob-
lem to teach integer programming; his class found a shorter solution, but
it involved halving the cabbage and halving the wolf! [Borndörfer et al.
1998].

To generalize the second problem requires an island in the river and
remains perhaps unsolved in general, since the improved solution in Press-
man and Singmaster [1989] can be criticised if one takes a more stringent
jealousy condition than we did.

Examples of Modern Recreational Problems

Longest Fishpole One Can Post (Mail)

An ancient problem involves a fisherman (or hunter or skier) who wants
to post (mail) his 2.5 m fishing rod (or gun or skis) and finds that the
post office has a maximum parcel length of 1.5 m. The fisherman solves
the problem by making a cubical box of edge 1.5 m and putting the rod
in diagonally. The diagonal of the box is 1.5 ×

√
3 ≈ 2.598. This is very

ingenious, but unfortunately there are other postal regulations. The length
plus the girth must be at most 3 m. The girth is the circumference in a
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plane perpendicular to the longest dimension, which is the length. For a
box of dimensions A × B × C, with A > B > C, the girth is 2B + 2C;
and so we must have A = 1.5 and A + 2B + 2C = 3. What is the longest
fishing rod that can be posted under these limitations? Suppose one uses
a cylindrical mailing tube?

The problem of finding the largest volume that one can post (mail) is
well known, and the maximum occurs for a cylindrical tube.

Crossing a Field

The following seems as if it should be an easy question, but I find it quite
messy and would like to see a solution better than my own.

You are on a path which runs south to a road. Along the road is a bus
stop, and you want to get to it as quickly as possible. Between the path
and the road is a field; and you can cut across the field, but your speed
may be slower than on the path or the road. Is it ever the case that the
optimal route is to go part way along the path, then go obliquely across
the field to a point part way along the road, and then go the rest of the
way along the road? Try to convince yourself of the answer before doing
any calculations. Determine the optimal route in general for all situations.

For standardization. let us assume that you start at the point A =
(0,W ) and are travelling to D = (L, 0) and that you travel from A to
B = (0, y), thence to C = (x, 0), then to D (see Figure 26).

A = (0,W)

B = (0,y)

C = (x,0) D = (L,0)

v

V

1

Figure 26: Diagram for the Crossing a Field Problem.

There are three speeds involved, but only their relative values are im-
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portant, so you can assume that your speed on the road is a unit speed, your
speed on the path is v, and your speed on the field is V , with V 6 v 6 1.

There is a common feature of the problems of crossing a field and posting
the longest fishpole that you should discover when you solve them, and
which is why I like these problems.

Folding a Chain of Cubes

There are several versions of this puzzle on the market; I first purchased
one in Paris in 1990 (see Figure 27 for one example).

Figure 27: A snake puzzle. Photo courtesy of Eryk Vershen.

They are simple geometric analogues of “transformer” toys. Each has a
chain of cubes, strung on an elastic. Each cube has a hole, either straight
through or from a face to an adjacent face (effectively a right-angle bend).
For a string of 27 cubes, one obviously wants to make a 3×3×3 cube. How
does one go about solving such problems systematically? Is there more than
one solution? If so, how many solutions are there? The original version of
this had one solution, but a set of five different versions has recently been
marketed. The variation can be identified by specifying in order whether
the connection from one cube to the next is straight (S) or turns (T)

There are also examples with the string forming a loop; for example, I
have one with 36 cubes in a loop, with all pieces being bends, and making
this into a 3 × 3 × 4 takes a little effort. There are also examples with 64
cubes on a loop, with some straight pieces and some bent pieces—these are
generally impossible to solve by hand. I also have an example with 125
pieces, all bends, which I have never solved, though it seems that a hand
solution should be possible. Can you write a program to do this?

What can one say about the number of straight and bent pieces in such
puzzles? Could one have a 27-cube string with all bends? Can you have
versions which make several solid (or even plane) shapes?

The problem of folding the snake into a cube is equivalent to finding
a hamiltonian path—that is, a path through each “cubie” (cubelet) in the
cube—with the turn at each step specified in advance as either (S) or (T).
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Abel et al. [2013] show that the problem of deciding whether it can be
done at all is NP-complete, meaning that the time required to do so for an
N×N×N cube may grow more quickly than any polynomial function of N .
Knowing that there is a solution, however, would not necessarily tell how
to perform the transformation—but would motivate you, on recreational
grounds, to try to find one!

Scherphuis [n.d.] lists all possible 3× 3× 3 possible snake puzzles that
are “doable”: Not counting rotations or mirror images of the hamiltonian
paths, there are 11,487 puzzles, of which 3,658 have unique solutions and 1
has 142 solutions. Scherphuis shows that it is impossible to have a doable
3×3×3 puzzle with only turns (as do Ruskey and Sawada [2003]), and his
Web page points to various pages with solutions for commercially available
snake puzzles as well as for the Kibble Cube, a variation in which the cubes
have grooves that allow for greater freedom.

A particularly clear solution to one 3×3×3 puzzle is at Cole [n.d.], and
there are potentially useful notations at Weston [2003] and Köller [1999].
You can find videos of people solving 3× 3× 3 and even 4× 4× 4 puzzles:
Search the Internet with a key such as “youtube snake cube 4x4x4”.

The snake puzzles have given rise to mathematical research into “bent”
hamiltonian paths and cycles in any dimension, where every connection is
a turn [Ruskey and Sawada 2003], and into which N2 snakes can be folded
into a flat square (whether this problem is NP-complete is unknown [Abel
et al. 2013]). The general field of study is known as combinatorial Gray
codes, in which successive objects or positions differ in some prescribed way.
A recreational example is change-ringing of church bells, in which the order
in which bells are rung can change only in specified ways.

But that 125-cube-long snake? I have since found the solution that
came with the puzzle, and a correspondent has sent a solution.

Rubik’s Cube

I spoke very briefly about Rubik’s Cube, describing it as an excellent ex-
ample of problem solving (Figure 28 shows the bigger version that is some-
times known as the Professor’s Cube). One can identify many of the classic
problem-solving skills:

• understanding the problem;

• establishing a notation;

• investigating subproblems;

• using conjugates (which is a special case of one of the basic problem-
solving techniques—transform a problem to a situation one knows
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Figure 28: A larger-than-usual (5×5×5) Rubik cube, scrambled; there are
even 8×8×8 and 9×9×9 cubes. Source: Creative Commons Attribution-
Share Alike 3.0 Unported, by Maksim.

how to solve and then transform the answer back to the original
situation—this is the idea of logarithms, Laplace, Fourier and other
transforms, similarity transformations, change of basis, mathematical
modelling, etc., as well as the idea behind machine shop or factory
work (take the item to be sawn to the saw, then bring the pieces back
to your workplace);

• using commutators (a less general technique, but one of great use in
group theory);

• creating an algorithm;

• demonstrating completeness of the algorithm; and

• seeking an optimum algorithm (still unsolved).

The eminent Dutch puzzle designer, Oskar van Deventer, has designed
and made a 17× 17× 17 cube!

[EDITOR’S NOTE: Prof. Singmaster was author of one of the first books
about Rubik’s Cube [1981], and is co-author of others [Slocum et al. 2009,
Frey and Singmaster 2010].]

The Penrose Pieces

Penrose’s pieces have led to the discovery of a new kind of solids, “qua-
sicrystals.”

I will only sketch the ideas here, with some references.
The former coat of arms (Figure 29) of London South Bank University

includes “the net of half a dodecahedron,” i.e., a pentagon surrounded by
five other pentagons.
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Figure 29: Former coat of arms of London South Bank University, designed
to include two Thames barges above a pentagon surrounded by five other
pentagons.

One of the basic results of crystallography is that no crystal structure
can have five-fold symmetry. In 1973, I wrote to Roger Penrose on a Poly-
technic letterhead that shows the half dodecahedron. Penrose had long
been interested in tiling the plane with pieces that could not tile the plane
periodically, and the letterhead inspired him to try to fill the plane with
pentagons and other related shapes.

He soon found such a tiling with six kinds of shape and then managed
to reduce it to two shapes that could tile the plane in uncountably many
ways but in no periodic way. Some of the tilings have a five-fold centre
of symmetry, and all have a sort of generalised five-fold symmetry. They
are now called quasicrystals. These tilings fascinated both geometers and
crystallographers and were extensively studied from the mid-1970s.

Penrose’s “kites and darts” shapes were simplified further to “fat and
thin rhombuses” (Figure 30). Rules for putting them together (e.g., a side
corner of a kite must coincide with the tip or rear of a dart) prevent the
shapes from tiling periodically. Figure 31 shows a “Penrose pattern” made
from the rhombuses of Figure 30.

The rhombus shapes were extended to three dimensions, where they are
related to the rhombic triacontahedron. Though the tilings are not peri-
odic, they have quasi-axes and quasi-planes, which can cause diffraction.
Using these, crystallographers determined the diffraction pattern that a
hypothetical quasicrystal would produce: It has a ten-fold centre of sym-
metry.

In 1984, such diffraction patterns were discovered by Dan Shechtman
(b. 1941) in a sample of rapidly cooled alloy now known as shechtmanite;
and some 20 substances are now known to have quasi-crystalline forms.
Shechtman received the 2011 Nobel Prize in Chemistry for his discovery
of quasicrystals [Royal Swedish Academy of Sciences 2011a; 2011b]. In-
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Figure 30: Penrose’s dart and kite, and his fat and thin rhombuses, with
notation of the degrees of the angles involved. Courtesy of Robert Austin
[2014].

Figure 31: A Penrose pattern made from the rhombuses of Figure 30.
Courtesy of Robin Wilson.

deed, examples had been found about 30 years earlier but the diffraction
patterns were discarded as being erroneous! It is not yet known whether
such materials will be useful but they may be harder or stronger than other
forms of the alloys and hence may find use on aeroplanes, rockets, etc. So
a mathematical flight of fancy has led to the discovery of a new kind of
matter on which we may be flying in the future! (See Gardner [1979; 1997]
for expositions of this topic.)
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The Educational Value of Recreations

A Treasury of Problems

Recreational mathematics is a treasury of problems which make mathe-
matics fun. These problems have been tested by generations going back
to about 1800 BC. In medieval arithmetic texts, recreational questions are
interspersed with more straightforward problems to provide breaks in the
hard slog of learning. These problems are often based on reality, though
with enough whimsey so that they have appealed to students and math-
ematicians for years. They illustrate the idea that ”Mathematics is all
around you ? you only have to look for it.”

An Optimal Learning Experience

“A good problem is worth a thousand exercises” (ancient proverb, made
up by myself). There is no greater learning experience than trying to solve
a good problem. Recreational mathematics provides many such problems
and almost every problem can be extended or amended. Hence recreational
mathematics is also a treasury of problems for student investigations.

Solving problems naturally develops problem-solving techniques. Some
of those which arise in recreational problems are:

• The problems often require clarification of the assumptions and one
may vary the assumptions to get different problems.

• One may need to create a notation.

• The mathematical or logical methods needed are often non-standard
and hence one has to use basic ideas in a novel way.

• The problems are often open-ended and natural generalizations are
often unsolved, so one has to re-examine the problem and ask new
questions.

For better or worse, mathematics is one of the only school courses where
students are expected to learn how to think! But thinking, like problem
solving, is best learned by doing and our problems are ideal for encouraging
this.

A Communication Vehicle for History and Culture

Because of its long history, recreational mathematics is an ideal vehicle for
communicating the historical and multicultural aspects of mathematics.
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A Communication Vehicle for Mathematical Ideas

An additional utility of recreational mathematics is that it provides us a
way to communicate mathematical ideas to the public at large.

Mathematicians tend to underestimate the public interest in mathemat-
ics. (Lee Dembart of the Los Angeles Times wrote that when he told people
he was going to a conference on recreational mathematics, they replied that
it was a contradiction in terms! And we all know the social situation when
you confess that you are a mathematician and the response is, “Oh. I was
never any good at maths.”) Yet somewhere approaching 200 million Ru-
bik Cubes were sold in three years! Indeed, there have been more Rubik
Cubes sold in Hungary than there are people. The best-known example
of a best-selling game is Monopoly, which took 50 years to sell about 90
million examples.

Another measure of the popularity of recreational mathematics is the
number of books that appear in the field each year, perhaps 50 in English
alone. The long-term best-selling recreational book in English must be
Mathematical Recreations and Essays by W.W. Rouse Ball (1850–1925),
originally published in 1892 and now in its 13th edition. It has rarely
been out of print in that time. And there are many older books, such
as Problèmes plaisants et délectables. . . by Claude Gaspard Bachet de
Méziriac in 1612, which had three editions in the late 19th century, the last
of which was reprinted several times in the 20th century.

Many newspapers and professional magazines run regular mathematical
puzzles, though this was perhaps more common in the past. Henry Dudeney
published weekly columns for about 15 years and then monthly columns
for about 20 years. Martin Gardner’s columns were a major factor in the
popularity of Scientific American and probably inspired more students to
study mathematics than any other influence. I have heard that circulation
dropped significantly when he retired. Other major names in the field are
the following:

• In English: Lewis Carroll (= Charles Lutwidge Dodgson) (1832–
1898), Sam Loyd (1841–1911), “Professor Hoffmann” (= Angelo John
Lewis (1839–1919) (about magic), Hubert Phillips (= “Caliban”)
(1891–1964), Thomas H. O’Beirne (1915–1982), Douglas St. Paul
Barnard (1924–1992?), Henry Dudeney (1857–1930), Martin Gard-
ner (1914–2010), Ian Stewart (b. 1945).

• In German: Wilhelm Ahrens (1912–1998), Hermann Schubert (1848–
1911), Walther Lietzmann (1880–1959).

• In French: Édouard Lucas (1842–1891), Pierre Berloquin (b. 1939).
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[I tried to carry on this tradition by contributing to the Daily Telegraph
and to the BBC Radio 4 programme “Puzzle Panel.”]

There really is considerable interest in mathematics out there; and if we
enjoy our subject, it should be our duty and our pleasure to try to encourage
and feed this interest. Indeed, it may be necessary for our self-preservation!

Why Is Recreational Mathematics So Useful?

I have been developing an answer to this, and it also answers Wigner’s
question. Mathematics has been described as a search for pattern—and
that certainly describes much of what we do and also much of what most
scientists do. But how do we find patterns? The real world is messy and
patterns are difficult to see. As we begin to see a pattern, we tend to remove
all of the inessential details and get to an ideal or model situation. These
models may be so removed from reality that they become fanciful—or even
recreational.

For example, physicists deal with frictionless perfectly elastic particles,
weightless strings, ideal gases, etc.; mathematicians deal with random sam-
ples, exact measurements, negative money, etc. Then such models get
modified and adapted into a large variety of models and techniques are
developed to describe and solve them.

Now, one of the ways in which a science progresses is by seeing analo-
gies between reality and simpler situations. For example, the idea of the
circulation of the blood could not be developed until the idea of a pump
was known and somewhat understood. The behaviour of a real system
cannot be developed until one can see simpler models within it. But what
are these simpler models? They are generally among the large variety of
models that have been created in the past, often recreational or fanciful.

Perhaps the clearest example is graph theory, where Euler made a simple
model of the reality that he was studying, then later workers found that
model useful in other situations. Graphs were then recognised as present
in many early problems: river crossing in ca. 800, knight’s tours in ca. 900,
etc.

Thus, recreational mathematics helps as a major source of mathemati-
cal models, techniques, and methods, which are the raw material for math-
ematical research, in the same way that mathematics in general serves as
a source of models for the physical world. I think this is the explanation of
the utility of recreations in mathematics and the utility of mathematics in
the real world.
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[23] Köller, Jürgen. 1999. Snake cube.
http://www.mathematische-basteleien.de/snakecube.htm

#Snake%20Cube%20on%20the%20Internet .

[24] Larison, Lorraine L. 1973. The Möbius band in Roman mosaics. Amer-
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