Luck, Logic, and White Lies







Luck, Logic, and White Lies

The Mathematics of Games

Jorg Bewersdorff

Translated by David Kramer

A K Peters
Wellesley, Massachusetts




Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

888 Worcester Street, Suite 230
Wellesley, MA 02482
www.akpeters.com

Copyright © 2005 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form, electronic or mechanical, including photo-
copying, recording, or by any information storage and retrieval system, without
written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Bewersdorff, Jorg.

[Luck, logil und Bluff. English]

Luck, logic, and white lies : the mathematics of games / Jorg Bewersdorff ; trans-
lated by David Kramer.

p. cm.
Includes bibliographical references and index.
ISBN 1-56881-210-8
|. Game theory. L.Title

QA269.B39413 2004
519.3—dc22
2004053374

Printed in Canada
09 08 07 06 05 10987654321




Contents

Preface

9

Games of Chance

Dice and Probability

Wiiting for a Double 6

Tips on Playing the Lottery: More Equal Than Equal?

A Fair Division: But How?

The Red and the Black: The Law of Large Numbers
Asymmetric Dice: Are They Worth Anything?

Probability and Geometry

Chance and Mathematical Certainty: Are They Reconcilable?

In Quest of the Equiprobable

[0 Winning the Game: Probability and Value

I I Which Die Is Best?

12 A Die Is Tested

I3 The Normal Distribution: A Race to the Finish!

4 And Not Only at Roulette: The Poisson Distribution

23

27

33

37

51

57

67

70

77

90




vi Contents

15 When Formulas Become Too Complex:

The Monte Carlo Method 94
16 Markov Chains and the Game Monopoly 106
17 Blackjack: A Las Vegas Fairy Tale 121
I Combinatorial Games 135
18 Which Move Is Best? 137
19 Chances of Winning and Symmetry 149
20 A Game for Three 162
21 Nim: The Easy Winner! 169
22 Lasker Nim: Winning Along a Secret Path 174
23 Black-and-White Nim: To Each His (or Her) Own 184

24 A Game with Dominoes: Have We Run Out of Space Yet? 201

25 Go: A Classical Game with a Modern Theory 218
26 Misére Games: Loser Wins! 250
27 The Computer as Game Partner 262
28 Can Winning Prospects Always Be Determined? 286

29 Games and Complexity: When Calculations Take Too Long 301

30 A Good Memory and Luck: And Nothing Else? 318
31 Backgammon: To Double or Not to Double? 326
32 Mastermind: Playing It Safe 344
lIl  Strategic Games 353
33 Rock—Paper—Scissors: The Enemy’s Unknown Plan 355

34 Minimax Versus Psychology: Even in Poker? 365




Contents

35 Bluffing in Poker: Can It Be Done Without Psychology?
36 Symmetric Games: Disadvantages Are Avoidable, but How?
37 Minimax and Linear Optimization: As Simple as Can Be
38 Play It Again, Sam: Does Experience Make Us Wiser!
39 Le Her: Should | Exchange?

40 Deciding at Random: But How?

4|1 Optimal Play: Planning Efficiently

42 Baccarat: Draw from a Five?

43 Three-Person Poker: Is It a Matter of Trust?

44 QUAAK! Child’'s Play?

45 Mastermind: Color Codes and Minimax

Index

vii

374
380
397
406
412
419
429
446
450
465
474
481







Preface

A feeling of adventure is an element of games. We compete against the
uncertainty of fate, and experience how we grab hold of it through our own
efforts. —Alex Randolph, game author

The Uncertainty of Games

Why do we play games? What causes people to play games for hours on
end? Why are we not bored playing the same game over and over again?
And is it really the same game? When we play a game again and again,
only the rules remain the same. The course of the game and its outcome
change each time we play. The future remains in darkness, just as in real
life, or in a novel, a movie, or a sporting event. That is what keeps things
entertaining and generates excitement.

The excitement is heightened by the possibility of winning. Every player
wants to win, whether to make a profit, experience a brief moment of joy,
or have a feeling of accomplishment. Whatever the reason, every player
can hope for victory. Even a loser can rekindle hope that the next round
will bring success. In this, the hope of winning can often blind a player to
what is in reality a small probability of success. The popularity of casino
games and lotteries proves this point again and again.

Amusement and hope of winning have the same basis: the variety that
exists in a game. It keeps the players guessing for a long time as to how
the game will develop and what the final outcome will be. What causes
this uncertainty? What are the mechanisms at work? In comparing games
like roulette, chess, and poker, we see that there are three main types of
mechanism:

1. chance:
2. the large number of combinations of different moves;

3. different states of information among the individual players.
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Random influences occur in games involving dice and the mixing of
cards. The course of a game, in accordance with its rules, is determined
not only by decisions made by the players, but by the results of random
processes. If the influence of chance dominates the decisions of the players,
then one speaks of games of chance. In games of pure chance, the decision
of a player to take part and the size of a player’s bet are perhaps his!
most important decisions. Games of chance that are played for money are
generally governed by legal statute.

During the course of most games, there are certain situations in which
the players have the opportunity to make decisions. The available choices
are limited by the rules of the game. A segment of a game that encom-
passes just one such decision of a single player is called a move. After only
a small number of moves, the number of possibilities can already represent
an enormous number of combinations, a number so large that it is diffi-
cult to recognize the consequences of an individual move. Games whose
uncertainty rests on the multiplicity of possible moves are called combina-
torial games. Well-known representatives of this class are chess, go, nine
men’s morris, checkers, halma, and reversi. Games that include both com-
binatorial and random elements are backgammon and pachisi, where the
combinatorial character of backgammon is stronger than that of pachisi.

A third source of uncertainty for the players of a game arises when the
players do not all have the same information about the current state of
the game, so that one player may not possess all the information that is
available to the totality of players. Thus, for example, a poker player must
make decisions without knowing his opponents’ cards. One could also argue
that in backgammon a player has to move without knowing the future rolls
of the dice. Yet there is a great difference between poker and backgammon:
no player knows what the future rolls of the dice will be, while a portion of
the cards dealt to the players are known by each player. Games in which the
players’ uncertainty arises primarily from such imperfect information are
called strategic games. These games seldom exist in a form that one might
call purely strategic. Imperfect information is an important component
of most card games, like poker, skat, and bridge. In the board games
ghosts and Stratego, the imperfect information is based on the fact that
one knows the location, but not the type, of the opponent’s pieces.? In

ITranslator’s note: the German word for player, Spieler, is masculine, and so the
author of this book could easily write the equivalent of “a player. .. his move” without
too many qualms. Faced with this problem in English, I have decided to stick primarily
with the unmarked masculine pronoun, with an occasional “his or her” lest the reader
forget that both men and women, boys and girls, can play games.

2Ghosts and Stratego are board games for two players in which each player sees only
the blank reverse side of his opponent’s pieces. At the start, a player knows only his
own pieces and the positions of the opposing pieces. In ghosts, which is played on a




Preface xi

combinatorial games
chess, Go

backgammon
Diplomacy, Stratego, ghosts

pachisi

rock-paper-scissors roulette
strategic games games of chance

Figure P.I. The three causes of uncertainty in games: a player wins through some
combination of chance, logic, and bluff.

Diplomacy,® and rock—paper-scissors, 4 the players move simultaneously,
so that each player is lacking the information about his opponent’s current
move. How this imperfect information plays out in a game can be shown
by considering what happens to the game if the rules are changed so that
the game becomes one of perfect information. In card games, the players
would have to show their hands. Poker would become a farce, while skat
would remain a combinatorially interesting game similar to the half-open
two-person variant. In addition to the game rock—paper—scissors, which is
a purely strategic game, poker is also recognized as a primarily strategic
game. The degrees of influence of the three canses of uncertainty on various
games are shown in Figure P.1.

There remains the question whether the uncertainty about the further
course of the game can be based on other, as yet unknown, factors. If one
investigates a number of games in search of such causes, one generally finds
the following:

chessboard with four good and four bad ghosts on the two sides, only the captured
figures are revealed. In Stratego, the capturing power of a piece depends on its military
rank. Therefore, a piece must be revealed to the opponent at the time of an exchange.

The simple rules of ghosts and a game with commentary can be found in Spielbor 3
1984, pp. 37-39. Tactical advice on Stratego can be found in Spielbor 2 1983, pp. 37 £

3Diplomacy is a classic among board games. It was invented in 1945 by Alan Cal-
hamer. Under the influence of agreements that the players may make among themselves,
players attempt to control regions of the board, which represents Europe before the First
‘World War. The special nature of Diplomacy is that the making and abrogating of agree-
ments can be done secretly against a third party. An overview of Diplomacy appears in
Spielboz 2 1983, pp. 8-10, as well as a chapter by its inventor in David Pritchard (ed.},
Modern Board Games, London 1975, pp. 26—44.

4Two players decide independently and simultaneously among the three alternatives
“rock,” “paper,” and “scissors.” If both players made the same choice, then the game
is a draw. Otherwise, “rock” beats (breaks) “scissors,” “paper” beats (wraps) “rock,”
and “scissors” beat (cut) “paper.”
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e the result of a game can depend on physical skill and performance
ability. In addition to sports and computer games, which do not
belong to the class of parlor games that we are considering here,
Mikado is a game that requires manual dexterity.

e the rules of a game can be partially ambiguous. One arrives at such
situations particularly in the learning phase of a complex game. In
other cases, doubts arise in the natural course of the game. Thus in
the crossword game Scrabble it can be unclear whether a word should
be permitted. And even in skat, there are frequently questions raised,
if only about minor details.

e an imperfect memory does not make only the game “memory” more
difficult. However, this type of uncertainty is not an objective prop-
erty of the game itself.

In comparison to chance, combinatorial richness, and differing informa-
tional states, these last phenomena can safely be ignored. None of them
can be considered a typical and objective cause of uncertainty in a parlor
game.

Games and Mathematics

If a player wishes to improve his prospects of winning, he must first at-
tempt to overcome his degree of uncertainty as much as possible and then
weigh the consequences of his possible courses of action. How that is to
be managed depends, of course, on the actual causes of the uncertainty: if
a player wishes to decide, for example, whether he should take part in a
game of chance, then he must first weigh the odds to see whether they are
attractive in comparison to the amount to be wagered. A chess player, on
the other hand, should check all possible countermoves to the move he has
in mind and come up with at least one good reply to each of them. A poker
player must attempt to determine whether the high bid of his opponent is
based on a good hand or whether it is simply a bluff. All three problems
can be solved during a real game only on a case-by-case basis, but they can
also be investigated theoretically at a general level. In this book, we shall
introduce the mathematical methods that have been developed for this and
provide a number of simple examples:

e games of chance can be analyzed with the help of probability theory.
This mathematical discipline, which today is used in a variety of
settings in the natural sciences, economies, and the social sciences,
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7th

grew out of a 17""-century desire to calculate the odds in a game of

chance.

e there is no unified theory for the combinatorial elements in games.
Nonetheless, a variety of mathematical methods can be used for an-
swering general questions as well as solving particular problems,

e out of the strategic components of games there arose a separate math-
ematical discipline, called game theory, in which games serve as a
model for the investigation of decison-making in interactive economic
processes.

For all three game types and their mathematical methods, the computer
has made possible applications that formerly would have been unthinkable.
But even outside of the development of ever faster computers, the mathe-
matical theory itself has made great strides in the last hundred years. That
may surprise those unversed in modern mathematics, for mathematics, de-
spite a reputation to the contrary, is by no means a field of human endeavor
whose glory days are behind it.

Probability theory asks questions such as, which player in a game of
chance has the best odds of winning? The central notion is that of proba-
bility, which can be interpreted as a measure of the certainty with which a
random event occurs. For games of chance, of course, the event of interest
is that a particular player wins. However, frequently the question is not
who wins, but the amount of the winner’s winnings, or score. We must
then calculate the average score and the risk of loss associated with it. It
is not always necessary to analyze a game completely, for example, if we
wish only to weigh certain choices of move against each other and we can
do so by a direct comparison. In racing games governed by dice, one can
ask questions like, how long does it take on average for a playing piece to
cover a certain distance? Such questions can become complicated in games
like snakes and ladders, in which a piece can have the misfortune to slip
backward. Even such a question as which squares in the game Monopoly
are better than others requires related calculational techniques. It is also
difficult to analyze games of chance that contain strong combinatorial ele-
ments. Such difficulties were first overcome in the analysis of blackjack.

Combinatorial games, such as the tradition-rich chess and go, are con-
sidered games with a high intellectual content. It was quite early in the
history of computational machines that the desire was expressed to develop
machines that could serve as worthy opponents in such games. But how
could that be accomplished? Indeed, we need computational procedures
that make it possible to find good moves. Can the value of a move be
somehow uniquely determined, or does it always depend on the opponent’s
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reply? In any case, the current state of technology for search procedures
and computational techniques is impressive. An average chess player no
longer has a ghost of a chance against a good chess program. And it is
not only chess that has been the object of mathematical interest. Win-
ning strategies have been found for many games, some of them surprisingly
simple. For other games it has been determined only which player theoret-
ically should win, without a winning strategy actually being found. Some
of these games possess properties that make it doubtful whether such a
strategy will ever be found.

It is a task of game theory to determine how strategic games differ
fundamentally from combinatorial games and games of chance. First, one
needs a mathematical definition of a game. A game is characterized by its
rules, which include the following specifications:

e the number of players.
e for each game state, the following information:

— whose move it is;
— the possible moves available to that player;

— the information available to that player in deciding on his move.
e for games that are over, who has won.

e for random moves, the probabilities of the possible results.

Game theory arose as an independent discipline in 1944, when out of
the void there appeared a monumental monograph on the theory of games.
Although it mentions many popular games such as chess, bridge, and poker,
such games serve game theory only as models of economic processes. It
should not be surprising that parlor games can serve as models for real-life
interactions. Many games have borrowed elements of real-life struggles for
money, power, or even life itself. And so the study of interactions among
individuals, be it in cooperation or competition, can be investigated by
looking at the games that model those interactions. And it should come as
no surprise that the conflicts that arise in the games that serve as models
are idealized. That is just as inevitable as it is with other models, such as
in physics, for example, where an object’s mass is frequently considered to
be concentrated at a single point.
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About This Book

‘We have divided the book into three parts to reflect our division of games
into three types, and so we investigate mathematically in turn the chance,
combinatorial, and strategic elements of games. Each of the three parts
encompasses several chapters, each of which considers a specific problem—
generally a game or game fragment.

In order to reach as broad an audience as possible, we have not sought
the generality, formalism, and completeness that are usual in textbooks.
We are more concerned with ideas, concepts, and techniques, which we
discuss to the extent that they can be transferred to the study of other
games.

Due to the problem-oriented selection of topics, the mathematical level
differs widely among the different chapters. Although there are frequent
references to earlier chapters, one can generally read each chapter inde-
pendently of the others. Each chapter begins with a question, mostly of
a rhetorical nature, that attempts to reveal the nature and difficulty of
the problem to be dealt with. This structure will allow the more mathe-
matically sophisticated readers, for whom the mathematical treatment will
frequently be too superficial and incomplete, to select those parts of greater
mathematical interest. There are many references to the specialist litera-
ture for those who wish to pursue an issue in greater depth. We have also
given some quotations and indications of the mathematical background of
a topic as well as related problems that go beyond the scope of the book.

We have placed considerable emphasis on the historical development of
the subject, in part because recent developments in mathematics are less
well known than their counterparts in the natural sciences, and also be-
cause it is interesting to see how human error and the triumph of discovery
fit into a picture that might otherwise seem an uninterrupted sequence of
great leaps forward. The significance of the progress of mathematics, espe-
cially in recent decades, in the not necessarily representative area of game
theory, can be seen by a comparison with thematically similar, though often
differing in detail of focus, compilations that appeared before the discovery
of many of the results presented in this book:

¢ René de Possel, Sur la théorie mathématique des jeur de hasard et
de réflexion, Paris 1936. Reprinted in Hevre Moulin, Fondation de la
théorie des jeux, Paris 1979.

e R. Vogelsang, Die mathematische Theorie der Spiele, Bonn 1963.

¢ N.N. Vorob'ev, The Development of Game Theory (in Russian), 1973.
The principal topic is game theory as a mathematical discipline, but
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this book also contains a section on the historical development of the
theories of games of chance, and combinatorial and strategic games.?

e Richard A. Epstein, The Theory of Gambling and Statistical Logic,
New York 1967 (expanded revised edition, 1977).

o Edward Packel, The Mathematics of Games and Gambling, Washing-
ton 1981.

e John D. Beasley, The Mathematics of Games, Oxford 1989.

o La mathématique des jeur, Bibliothégue pour la Secience, Paris 1997.
Contributions on the subject of games from the French edition of Sei-
entific American, some of which have been published in the editions
of other countries.
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Dice and Probability

With a pair of dice, one can throw the sum 10 either as the combination
545 or6+4. The sum 5 can also be obtained in two ways, namely, by
144 or 2+ 3. However, in repeated throws, the sum 5 will appear more
often than 10. Why?

Although we are exposed in our daily lives to a variety of situations in-
volving chance and probability, it was games of chance that provided the
primary impetus for the first mathematical investigations into this domain.
Aside from the fact that there is a great attraction in discovering ways of
winning at the gaming table, games of chance have the advantage over the
rough and tumble of real-life events that chance operates in fixed and pre-
cise ways. Thus the odds, dictated by the laws of probability, of throwing a
six, say, are much simpler to calculate than the odds that a bolt of lightning
will strike the Eiffel Tower on July 12 of next year. The reason for this
is primarily that the situation in a game of chance is reproducible under
identical conditions, with the consequence that theoretical results can be
checked by experiments that can be repeated as often as one likes, if the
results are not already well known as facts of common experience.

The first systematic investigation of games of chance began in the mid-
dle of the 17" century. To be sure, there was some sporadic research earlier:
indeed, in the 13*" century, the probabilities of the various sums that can
be obtained with a pair of dice were correctly determined.! This fact is
particularly noteworthy in that over the following centuries, many incorrect

1R. Ineichen, Das Problem der drei Wiirfel in der Vorgeschichte der Stochastik,
Elemente der Mathematik 42, 1987, pp. 69-75; Ivo Schneider, Die Entwicklung der
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analyses of the same problem appeared. The first to create a systematic,
universal approach to the description of problems of chance and probabil-
ity was Jacob Bernoulli (1654-1705), with his Ars coniectandi (The Art
of Conjecture). According to Bernoulli, its object was “to measure the
probability of events as precisely as possible, indeed, for the purpose of
making it possible for us in our judgments and actions always to choose
and follow the path that seems to us better, more worthy, more secure,
or more advisable.”?> Bernoulli had in mind not only games of chance,
but also the problems of everyday life. His belief in the necessity of a
mathematical theory of probability is alive and well even today. This was
formulated with admirable concision by the renowned physicist Richard
Feynman (1918-1988): “The theory of probability is a system for making
better guesses.”

Of central importance in Bernoulli’s theory is the notion of probability,
which Bernoulli called a “degree of certainty.” This degree of certainty is
expressed by a number. As inches and centimeters measure length, so a
probability measures something. But what exactly does it measure? That
is, what sort of objects are being measured, and what qualities of those
objects are the subject of measurement?

Let us first take a single die. We can describe the result of throwing the
die by saying, “the result of throwing the die is equal to 5,” or “the result
is at most 3.” Depending on what was actually thrown, such a statement
may be either true or false. To put it another way, the event described
by the statement made may occur, or may not occur, as the result of a
single experiment. The extreme case of an impossible event, such as that
represented by the statement, “The result of throwing the die is 7,” never
occurs. In contrast, a certain event, for example that described by the
statement, “The result is between 1 and 6,” occurs in every trial of the
experiment.

The events may be considered objects that can be measured with prob-
ahilities. What is measured with respect to an event is the degree of cer-
tainty, or the degree of likelihood, with which the event will occur in a
single trial.

But how is this degree of certainty to be measured? To measure means
to compare. Thus we measure length by comparing the item to be measured

Wahrscheinlichkettstheorie von den Anfangen bis 1953, Darmstadt 1988, p. 1 and 5-8
{annotated references). A historical overview of the development of the calculation of
probabilities can also be found in the appendix to the textbook by Boris Vladimirovich
Gnedenko, Theory of Probability, Berlin 1998.

25ee the comprehensive reprint, Jacob Bernoulli, Wahrscheinlichkeitsrechnung, Ost-
walds Klassiker der exakten Wissenschaften, volume 107, Frankfurt am Main 1999,
p- 233.
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with a ruler. In the case of probabilities, measuring is not so simple. On
the one hand, the objects to be measured are intangible, and on the other
hand, in contrast to measures such as speed, temperature, or brightness,
what we wish now to measure cannot be directly observed. Nonetheless,
it is intuitively clear how one might estimate the degree of certainty for
an event: simply perform the deed! That is, one throws the die, and the
more often, the better. The greater the frequency with which the event
occurs, the more likely it is that the event will occur in a single throw of
the die. To state this numerically, the measurement is encapsulated in the
relative frequency, which is the quotient of the number of times the event
occurred divided by the total number of trials. For example, if in 6000
throws, the event of throwing at least a 5 occurred 2029 times, then the
relative frequency would be 2029/6000 ~ 0.338. We have thus measured
the degree of certainty of throwing at least a 5 to be 0.338. A second
measurement with the same or different number of throws would be unlikely
to yield the same result, though we may suppose that the result would be
similar. A conclusive value is therefore not to be obtained in this way,
and even specifying what it would mean to make a precise measurement is
problematic. The only events that are exactly measurable are the certain
events, which always have relative frequency 1, and the impossible events,
whose relative frequency is always 0.

If one wishes to compare the degree of certainty of different events,
one does not necessarily have to resort to experiment. It is possible to
use the idea of symmetry. For example, since the six faces of the die are
geometrically identical, we may assume that the corresponding events have
equal likelihood. That is, the six possible events relating to the outcome of
throwing a die have the same probability. On a probability scale, ranging
from 0 for impossible events through 1 for certain events, the probability
for each of the six results of throwing a die, precisely one of which will occur
in a particular trial, is (l—) Bernoulli stated it thus: “Probability is namely
the degree of uncertainty, and it differs from it as a part from a whole.”

The event of throwing at least a 5 comprises the events of throwing
a 5 and throwing a 6. Therefore, the probability of this event should be

assigned the value 2 = 1. Similarly, the probability of throwing an even

number is equal to % = g .

Probabilities can thus be computed just as they are for dice whenever
a system of equal probabilities (an equiprobable system) is under consid-
eration. In 1812, Pierre Simon Laplace (1749-1824) declared, in his Fssai
philosophigque sur les probabilités, that outcomes are equiprobable when-
ever “we have the same uncertainty about their occurrence” and “have no
reason to believe that one of these events is more likely to occur than an-

other.” If the possible results of a random experiment are equiprobable in

[
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2nd die

1 2 3 4 5 6

lst die 1|1-1 1-2 1-3 14 1-5 1-6
2121 22 23 24 25 26

3131 32 33 34 35 36

4141 42 43 44 45 4-6

5151 52 53 54 55 56

66-1 6-2 6-3 64 6-5 6-6

Table I.1. The 36 combinations of two dice.

this sense, then the probability of an event, according to Laplace, can be
defined as follows: the number of outcomes in which the event occurs, that
is, those that are “favorable” for the event, divided by the total number
of possible outcomes. If A is an event, then Laplace’s definition can be
expressed with the formula

number of favorable outcomes for A

probability of event 4 = -

number of possible outcomes
We have already mentioned the close connection between the relative fre-
quency in the context of a series of trials and the notion of probability:
both use the measuring scale from 0 to 1, and in the case of impossible
and certain events, their measurements are the same. If a series of tri-
als takes place “ideally,” in the sense that equiprobable events occur with
the same frequency, then the notions of relative frequency and probability
coincide. Bernoulli discovered another relation, which is of considerable
interest: the law of large numbers. It states that in long series of trials,
the relative frequencies are approximately equal to the associated probabil-
ities. This is also justification for stating that probabilities of events truly
measure the degree of certainty as intuitively understood. For example, if
the probability of winning a game is greater than that of losing, then if one
plays frequently enough, one is highly likely to win more often than lose.
Bernoulli’s law of large numbers even makes assertions about how closely
probabilities and relative frequencies agree. We shall return to this topic
later on.

In the case of a single die, symmetry is the reason for considering the six
possible values as equiprobable and thus for assigning the same probability
to each of the six events. Thus there is no reason—in the sense of Laplace—
why one value should appear more frequently than another. In the case of
two dice, there are 36 combinations of the two values (Table 1.1). What
is important—and this was omitted from our earlier discussion—is that
combinations like 2-3 and 3-2 are different. In practice, of course, the
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difference is not often considered, especially when two identical dice are
thrown. However, if the dice are of different colors, then there will be no
trouble in distinguishing 2-3 from 3-2.

Are these 36 combinations equiprobable in the sense of Laplace? We
note first that it is insufficient simply to rely on symmetry. It is possible
that there are some dependencies between the values on the two dice, as is
the case when two cards are drawn from a pack of cards. If a card is drawn
from a standard deck of 52 cards, then the probability of drawing any of
the 13 card values is equal to 4/52 = 1/13. However, if a second card is
drawn without replacing the first, then the result for this second card has
a different set of probabilities. Thus it is less probable that the same value
as that of the first card will be drawn, since only 3 of the remaining 51
cards have that value. On the other hand, each of the remaining 12 values
has probability 4/51 of being drawn.

The reason for the change in probabilities is that as a result of drawing
the first card, the state of the pack of cards has changed. Something similar
in the case of a pair of dice is less plausible, since their state, in contrast
to that of the cards, does not depend on previous events: dice have no
“memory.” In the sense of Laplace, then, no matter how the first die
lands, there is no reason to think that the results of the second die do not
all have the same probability. Thus all 36 combinations of two dice may
be viewed as equiprobable.

The question posed can now be answered: using the Laplacian ap-
proach, we see that four of the 36 combinations yield the sum 5, namely,
1-4, 4-1, 2-3, and 3-2. The sum 10, however, is achieved with only three
combinations: 4-6, 6-4, and 5-5. Therefore, the event of throwing the sum
of 5 with two dice is more likely than that of throwing 10.




Waiting for a Double 6

If one wagers that one will throw at least one 6 in four throws of a single
die, then experience shows that a win is more likely than a loss. However,
what if instead, one wagers on the variant of throwing at least one double
6 in a certain number of throws? How many attempts should one require
in order to make such a wager favorable? The following reasoning seems
to make sense: Since a double 6 is one of 36 equiprobable combinations,
and therefore only one-sizth as likely as obtaining a 6 with a single die, one
would require siz times as many attempts. Thus it would appear that the
wager of throwing at least one double 6 in 24 throws of a pair of dice is a
favorable one. Should one actually make such a bet?

Something like the above thought process likely went through the mind
of Chevalier de Méré (1607-1684), who, in the judgment of Blaise Pascal
(1623-1662), was “rather a clever fellow,” though to be sure, no mathe-
matician (“a great shortcoming”). Among de Méré’s principal occupations
was wagering in games of chance, and the following observation baffled him:
whereas with a single die, four throws suffice to make it worthwhile to bet
on obtaining at least one 6, with two dice, six times as many throws do
not suffice. Thus the obvious conclusion that one should multiply the num-
ber of necessary trials by the factor representing the degree of the smaller
probability is not to be relied upon.

De Méré, who could not explain his bad luck, turned to Pascal in 1654
for help. Pascal, who at the time was carrying on a correspondence with his
colleague Pierre de Fermat (1601-1665) on the subject of odds in games of
chance, considered de Méré’s problem. And so this episode, together with

8
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a portion of the correspondence, has come down to us.!

This correspon-
dence is generally considered the beginning of the subject of mathematical
probability, even though a unified theory centered on the notion of prob-
ability was conceived only later, by Jakob Bernoulli. One might add that
de Méré’s problem caused Pascal and Fermat no difficulty whatsoever. An
explanation for de Méré’s observation is simply that one should compare
the number of possible outcomes with the number of outcomes that lead
to a win.

Thus there are 6 x 6 x 6 x 6 = 1296 ways of throwing a single die
four times. In the sense of Laplace, all 1296 outcomes are equiprobable,
and therefore have the same probability. One loses the wager if no 6 is
thrown. For that to happen, there are five possibilities for each throw,
leading to 5% 5 x 5 x 5 losing combinations, against which are to be counted
1296 — 625 = 671 winning combinations, so that the probability of a win is
671/1296 = 0.518, somewhat greater than the probability of losing, which
is 625/1296 ~ 0.482.

With 24 throws of two dice there are astronomically many possibilities,
namely, 3624, which is a 38-digit number. The probability of losing is
3524 /36%*, which is more easily calculated in the form (35/36)** =~ 0.5086.
This time, the probability of winning is smaller than that of losing, which
is 0.4914, just as de Méré apparently experienced.

The formula for computing probability, going back to Laplace, where for
an event the number of favorable outcomes is divided by the total number
of all possible outcomes, is simple in prineiple, but is often unmanageable in
practice, such as in our example, in which there are astronomically many
combinations. In such cases it is more practicable to use the formulas
provided by the multiplication law and the addition law. Both laws make
statements about the probability of events that oceur in a logical relation to
one another. Thus we have the multiplication law for independent events:

If the occurrence or nonoccurrence of an event does not in-
fluence the probability of another event—one says that these
events are independent—then the probability of both events
occurring is equal to the product of the individual probabili-
ties.

For example, the probability of obtaining two even numbers with the
throw of two dice is 1/2x 1/2 = 1/4. Of course, one also obtains this result
if one calculates the number of favorable combinations: with a single die, an
even number is obtained with probability 1/2, that is, in three out of the six

1Ivo Scheider, Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfingen bis
1933, Darmstadt 1988, p. 3, 25—40.
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possible outcomes. Therefore, in 3 x3 = 9 equiprobable combinations, both
values are even, which yields the probability 9/36 = 1/4. Of importance
here is that the favorable outcomes of both events can be combined as
equiprobable events only because the two dice do not influence each other’s
outcomes.

If one throws a pair of dice once, then the probability of not obtaining a
double 6 is 35/36. Therefore, the probability of not obtaining a double 6 in
24 throws of the dice is (35/36)24. How does one parlay this probability of
losing into the probability of winning? For this, we summon the addition
law:

If two events are mutually exclusive, that is, both events cannot
occur in a single trial, then the probability that one of the events
will occur in a single trial is equal to the sum of the individual
probahilities.

For example, the probability of obtaining either an even number or a
5 in one throw of a single die is 3/6 + 1/6 = 4/6 = 2/3. One can throw
either a 2, 4, 6, or 5. Since the number of favorable outcomes is added, the
probabilities are also added. A special case of the addition law is that in
which two events are complementary; that is, they are mutually exclusive,
but together constitute a certain event. The sum of their probabilities is
always 1. Thus for example, the probability of obtaining at least one double
6 in 24 throws of two dice is equal to 1 — (35/36)%".

With the addition and multiplication laws at our disposal, we can obtain
an even more interesting view of de Méré’s problem: if the probability of
an event is p, then in a series of m trials, the probability that the event
will occur at least once is given by the formula 1 — (1 — p)™. To have at
least an even chance of winning, this value must be equal to at least 1/2.
This happens when the number m of trials is at least?

In2
—In(1 —p)

This fraction is equal approximately to In2/p, with the natural logarithm
In2 = 0.6931.. ., where the exact value is obtained by dividing by 1+ p/2+
p2/3+p25/4+____13

2The condition 1 — (1 —p)™ > 1/2 is converted to the form (1 —p)™ < 1/2, and then
logarithms are taken. Note that both logarithms are negative.
3The power series of the natural logarithm is given by
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This correction is especially important when the probability p is not
very small. For example, in the case p = 1/6, one should divide by 1.094.
On the other hand, with smaller probabilities, the approximation In2/p
can be used with no problem, so that the required number of trials grows
approximately in inverse proportion to the probability, just as de Méré
apparently hypothesized as a general law.

Thus de Méré’s intuition was not wholly in error. Moreover, his false
conclusion was often in later years outdone by others. For example, it has
been frequently conjectured that with three throws of a single die or with
18 throws of a pair of dice, the probability of winning, that is, obtaining
at least one 6 in the first case and at least one double 6 in the second, is
already 50%. It was easily overlooked that some of the results can occur
more than once in the course of the 18 throws, so that fewer than half of
the possible results occur. One case, in which de Méré’s error was outdone
in a spectacular way, is mentioned by the American gambling expert John
Scarne in his book Complete Guide to Gambling.* In 1952, a gambler,
imagining that he had the advantage, is said to have lost $49 000 betting
on obtaining at least one double 6 in 21 throws of the dice. In fact, the
probability of winning, 1 — (35/ 36)21 ~ (.4466, is considerably less than
the gambler must have believed.

4 John Scarne, Complete Guide to Gambling, New York 1974, p. 16.




Tips on Playing the Lottery:
More Equal Than Equal?

A statistical analysis of 1433 rounds of the German lottery, from October
1955 to the beginning of 1983, revealed—uwithout taking into account the
“bonus” numbers—that in 76.4% of the rounds, at least one of the numbers
between 1 and 10 was among the winning siz numbers drawn. Therefore,
players whose bets contained none of the numbers between 1 and 10 had,
on the basis of this fact, no chance of winning with “siz numbers correct”
in 76.4% of the rounds. Should one therefore always select at least one of
the numbers between 1 and 10 in one’s bet?

This lottery, which in Germany and a number of other countries is played
in the form “6 out of 49,” is one of the most popular games of chance today.
And not only for the public, but for governments as well, whose profit of
roughly half of ticket sales is assured even before the numbers are drawn.
Lotteries began in the 16" century, in the city of Genoa, where in that era
five senators were chosen yearly by lot. Moreover, one could place bets on
the outcome from among the 110 candidates. In time, the game became
independent of the election, and was played for its own sake. Instead of
names, numbers were used. Even the regimes of the former Iron Curtain
countries could not resist the onslaught of the lottery.! Even there, the
game originally branded as capitalistic took hold.

IThe development of the lottery in the German Democratic Republic is described in
Wolfgang Paul, Erspicltes Glick: 500 Jahre Geschichte der Lotterien und des Lotto,
Berlin 1978, pp. 190-192.

12
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Because of its popularity, the lottery has been the subject of a number
of publications. In a book on lotteries,? the question cited at the beginning
of this section is discussed:

From such a point of view, one must admit that the lottery
is illogical. If one thinks about it, it is quite simple. All the
numbers, or all “starting numbers,”? those from 1 to 44, do not
have the same odds.

Because that is so, all series of six numbers do not have the
same odds.

... Those who play the lottery and therefore create lists of
numbers that begin with a number greater than 10, are throw-
ing away three-quarters of their chances of choosing six correct
numbers. Even if fortune were smiling on them. They can hope
to choose six winning numbers in just under one-fourth of the
drawings, since their selection of six numbers is simply incom-
plete. Players who choose high numbers are like those who buy
one-fourth of a raffle ticket and expect to be able to win the
entire jackpot. It is simply impossible.

One is almost ready to believe that all one’s future lottery tickets should
contain at least one of the numbers between 1 and 10. On the other hand,
every number, and hence every set of lottery numbers, is theoretically
equiprobable, as formulated by Laplace. And why should the numbers
from 1 to 10, and not other groups of ten numbers, such as

e 34 to 43 or
e 4.9 14,19 24 29, 34, 39,44, 49, or
e 11,16,17,22,23, 25,29, 32, 36, 48,

play a special role? All well and good, but perhaps these speculations are
nothing more than dull theory. After all, the results of a statistical analysis
cannot simply be ignored, can they? But is it really as extraordinary as it
appears? And can the statistical result really be an argument for such a
recommendation?

Let us forget for a moment that the statistical analysis has been done.
What sort of result was to be expected? That is, how great is the proba-
bility, and thus the relative frequency, that a drawing of lottery numbers
would contain at least one of the numbers from 1 to 10?7 To obtain an an-
swer, one could program a computer to count all of the possibilities and to

2Rolf B, Alexander, Das Taschenbuch vom Lotto, Munich 1983, pp. 26, 68 f,

3By “starting number” is meant the smallest of the six chosen numbers.
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keep track of how many are “favorable.” A simpler method exists, thanks
to some formulas from the field of combinatorics, a subdiscipline of mathe-
matics that deals with the variety of ways that objects can be combined or
arranged. The simplest situation that one could imagine is the completely
independent combining of characteristics, such as the result of throwing
two dice: each result of one die can be combined with the result of the
second, so that there are 6 x 6 = 36 combinations, where we distinguish
such combinations as 2-6 and 6-2.

The situation becomes somewhat more complex when we start shuffling
the cards. How many ways are there to arrange a specified number of
different cards? If we are dealing with three cards, which we may as well
label 1, 2, 3, then the following arrangements are possible:

123 132 231 213 312 321,

We see, then, that three cards can be arranged in six ways. We say that
there are six permutations. With four cards, there are 24 permutations, and
with five cards, the number climbs to 120. To discover what these numbers
are, we do not, fortunately, have to write down all the permutations. For
example, with five cards, there are five possibilities for choosing the first
card. Once the first card has been selected, the second card can be chosen
from the remaining four cards. For the third card, there are three choices,
and for the fourth, there are two. At the end, we must choose the one
remaining card with a single “choice.” The number of permutations of five
cards or five of any set of distinet objects is therefore equal to 5 x 4 x 3 x
2 x1=120.

The notion of permutation is so important that it is interpreted as a
mathematical operation in its own right. This operation is called factorial
and is indicated by an exclamation point. Thus n! (read “n factorial”)
stands for the number of permutations that can be formed with n distinct
objects. In analogy to our example of n = 5, we can calculate n factorial
with the formula

nl=nxnh-1)xn-2)x---x4x3x2x1,
which for the numbers n = 1,2, 3,4, 5,6 yields the values
=1 20=2 31=6, 4 =24 5/=120, 6! = 720.
It turns out to be useful to assign the value 1 to zero factorial. That is,
0 =1.

The 32 cards of a skat deck can be shuffled in 32! = 32 % 31 % --- x 4 x
3 x 2 x 1 different ways, which is a 35-digit number, and thus, according
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to current cosmological theory, much greater than the number of seconds
that have elapsed since the Big Bang that got the universe going. That
number possesses a mere 18 digits:

32! = 263130836 933 693 530 167 218 012 160 000 000.

However astronomically large this number may be, it is vanishingly small
in comparison to the 52! permutations of a rummy or poker deck: 52! is a
67-digit number, about the number, according to some estimates, of atoms
in the entire universe.?

In the German lottery, six out of 49 numbers are drawn, if we ignore
the bonus numbers for now. Analogous drawings are made in other games
as well. In poker, each player receives five of the 52 cards, while in skat, one
receives ten out of the 32 cards in the deck. What is common to all these
situations is that from a set of distinct objects, a fixed number of those
objects is selected randomly. The order in which the items are selected is
irrelevant. In such cases, one speaks of combinations.

The number of possible combinations can be determined in a manner
similar to that by which permutations are calculated: for the first ball,
there are 49 possibilities. When the second number is chosen, there are 48
ways in which that can occur. Thus there are 49 x 48 ways of drawing the
first two numbers. Each time a ball is chosen, the number of ways that
the next number can be selected is diminished by 1. Therefore, there are
altogether 49 x 48 x 47 x 46 x 45 x 44 sequences of six lottery numbers,
where we note that some of the sequences are identical in the collection of
numbers drawn, though not in the order in which they were chosen. We
can state this more precisely: each set of six lottery numbers can appear
in precisely 6! = 720 different drawing sequences. That is, the number of
combinations is

49 x 48 x 4T x 46 x 45 x 44

= 13983 816.
6!

Thus there are just under 14 million possible sets of numbers that one can
bet on. It follows that the probability of choosing “six correct” is about 1 in
14 million. That in spite of this minuscule probability, one or more winners

40ne can see how rapidly the factorial function grows with the aid of Stirling’s for-
mula, which provides an approximation to the factorial function. Stirling’s formula

reads nan
n! = (—) Vv 2mn,

e
where the relative error is quite small for large values of n. The quality of the ap-
proximation can be described by saying that the quotient n! divided by the Stirling
approximation lies between el/(12n+1) and ¢!/(12n) For example, for n = 32, one
obtains the approximation 2.6245 x 103% which is a mere 0.26% too small.
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are announced almost every week is due solely to the enormous number of
lottery tickets sold, which greatly exceeds the number of players, many of
whom place multiple bets.

The general formula for the number of combinations can be written
down by analogy with the lottery formula: if k£ objects are chosen from a
set of n distinct objects, then there are

nn—n-2)---(n—k+1)
k!

different possible selections. This fraction, which always reduces to an
integer, is called the binomial coefficient. It is written

(&)

and is read as “n choose k" to reflect the fact that we are choosing k objects
from a set of n objects. The number of possible lottery combinations is

)

which yields the number calculated above.
P

Pascal’s Triangle

The collection of all binomial coefficients can be arranged in a
diagram that is known as Pascal’s triangle

In the diagram, the hinomial coefficient (:) is located in the
(n + 1)st row, in the (k + 1)st position. For example, (3) =
6 is to be found as the third value in the fifth row. What
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makes Pascal’s triangle interesting is that all of the values can
be computed without any multiplication, since every number in
the triangle is the sum of the two numbers lying immediately
above it. We can easily explain why this is so: to select k cards
from a deck of n cards, choose either the first card and then
the remaining k — 1 from the remaining n — 1, or do not choose
the first card, and choose all k cards from the remaining n — 1
cards. This way of proceeding corresponds to the equality

Q-G

With binomial coefficients in our bag of tricks, it is now a simple matter
to calculate lottery probabilities. From among the almost 14 million pos-
sible combhinations of six lottery numbers, there are only (?) = 3262623
that are formed from the 39 numbers from 11 to 49. That is, the proba-
bility that all six numbers played are greater than or equal to 11 is 0.2333.
Based on the law of large numbers, one expects over time that the number
of drawings in which at least one number is in the range 1 to 10 will be
about 76.67%. The result of the statistical analysis, 76.4%, is therefore
anything but unusual.

If the statistical result is nothing unusual, what does that say about
the proposed recommendation always to select at least one number in the
range from 1 to 107 Forget it! It is based on an erroneous conclusion.
The statement that a ticket without one of the numbers from 1 to 10 has
an almost 77% chance of losing because with that probability one of the
numbers from 1 to 10 will be chosen is simply of no interest. It says no
more than that the probability of choosing the six correct numbers without
following the recommendation is less than 0.2333. But that is clear, for we
know already that the probability of six correct is much less than that,
namely, 0.0000000715.

Still not convinced? Let us imagine that we had chosen the numbers
22,25, 29, 31, 32, 38. Since we can watch the numbers being drawn on
television, we ask a friend to write down the numbers as they are drawn.
Still unconvinced whether it was a good idea not to choose at least one
number between 1 and 10, we then ask our friend, “Is one of the numbers
between 1 and 10 among the chosen?” In just under 77% of the cases, our
dreams of riches are shattered with the answer yes. So far, so good. Yet in
another 23% of the cases—and here the author cited above is in error—our
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hope of winning is not the same, but in fact, it increases. Now we need
only to have chosen six correct numbers out of 39, instead of out of 49.
Now that we have convinced ourselves that the suggestion from the book
is unfounded, the question remains what a lottery player who does follow
the suggestion should expect. We should first mention, of course, that
such combinations of numbers are not “better,” as the author supposes,
but neither are they “worse,” that is, any less probable, than the others.
In that respect, following the recommendation does no harm. However, if
one considers that the amount that one wins in the lottery depends on how
many players have purchased a winning ticket, the picture changes con-
siderably.® Every combination of numbers that contains frequently chosen
numbers and combinations of numbers is therefore less favorable, because
if that combination wins, it is more likely than otherwise to be won by
a number of players. For example, it is known that many lottery players
derive their numbers from dates, in which the numbers from 1 to 12 and
from 1 to 31 appear. Other preferences are based on numerological con-
siderations, such as the lucky number 7. Even the way the numbers are
distributed on the lottery form has an influence on the numbers chosen.

-

-
gt

The Winning Categories in the Lottery

‘We can use the binomial coefficients to determine with ease
the chances of winning in one of the other lottery winning cat-
egories. For example, one chooses exactly 4 correct numbers
when

e 4 of the 6 numbers wagered and

e 2 of the 43 numbers not wagered

5The amounts won can vary by a great deal. In the group of winners who chose “six
correct,” it has twice happened that the payouts were particularly small. In the drawing
of 18 June 1977, there were 205 supposed “lucky duckies”™ who had all bet on the six
winning numbers 9, 17, 18, 20, 29, 40. However, the payout to each was not millions, but
a pitiful 30737.80 German marks. (Translator’s note: about $13 100 at 1977 exchange
rates). What happened? It turns out that many players, particularly in the north by
northwestern areas of Germany, had gotten into the habit of betting on the numbers
that had won the week before in the Netherlands lottery. This strategy showed itself
to be a grave error, not because the chances of an exact match of the Dutch numbers
was any less likely than any other combination, but because too many other players had
the same idea. In another drawing, from 23 January 1988, there were 222 winners. The
reason here was apparently the regularity of the numbers: 24, 25, 26, 30, 31, 32.
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are drawn. Thus if we combine the number of combinations for
the winning numbers and those for the nonwinning numbers,

we obtain
6y /43
(4) ( 2) =15 x 903 = 13 545

possibilities. This yields a probability of 0.00097, or about
1/1032. So not even one in every thousand players chooses
“four correct.” The following table shows the probabilities of
winning in one of the various winning categories:

Win Class Combinations | Probability
6 Correct 1| 1/14 million
6 Correct 4+ Bonus 6 | 1/2.3 million
5 Correct 252 1/55491

4 Correct 13545 1/1032

3 Correct + Bonus 17220 1/812

3 Correct 229600 1/61
loss (all the rest) 13723192 0.981

Because of the additional “bonus number” (a number chosen
between 0 and 9), the highest winning category is subdivided
into two classes, with the odds ratio 9:1. Thus the probability
of landing in the top category (6 numbers out of 49 plus the
bonus number) comes to only 1 in 140 million. In spite of
increasing sales, not least due to the reunification of Germany, a
winner in the highest category often does not appear for several
weeks. The unclaimed cash is added to the jackpot for the next
drawing. In 1994, the jackpot reached its highest value of about
$24 million.

It is possible to obtain indirectly some information about the most fre-
quently chosen numbers by studying the amounts distributed in the weekly
drawings to see which numbers yield higher payouts, and which lower.
However, there are many influences on these numbers, such as more- and
less-favored partial combinations and variations from drawing to drawing,
so that only limited information can be obtained.® Much more informative

SHeinz Klaus Strick, Zur Beliebtheit von Lottozahlen, Prazis der Mathematik 33:1,
1991, pp. 15-22; Klaus Lange, Zahlenlotto, Ravensburg 1980, pp. 61-110.
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was a study done in 1993 in the state of Baden-Wirttemberg, in which
all bets were examined.” Among these players’ bets, 80.7% had at least
one number between 1 and 10. One may conclude that such numbers are
so frequently chosen that combinations with numbers less than or equal
to 10 are to be avoided. One would be doing the book of this study too
much honor to believe that the popularity of those numbers is due to its
recommendation. The cause is undoubtedly the preference for dates, as we
mentioned above.

Ry
N H

A Game of Poker

In the game of poker, each player receives 5 cards from a pack
of 52. Thus there are

= 2598 260

5 1 x2x3x4x5b

(52)_52><51><50><49><48

different poker hands. If out of these almost 2.6 million combi-
nations one wished, say, to determine how many contain “two
pairs,” it would be perhaps best to proceed as follows: a hand
of two pairs consists of five cards, with three different values,
of which two appear twice. An example is

e 4 of hearts, 4 of clubs, jack of hearts, jack of spades, queen
of spades.

A hand of two pairs is uniquely determined by the following
attributes:

“Karl Bosch, Lotto und andere Zufdlle, Braunschweig 1994, pp. 201 ff.; Karl Bosch,
Gliicksspiele: Chancen und Ristken, Munich 2000, pp. 57-70. This study looked at al-
most 7 million sets of lottery numbers, so that each of the almost 14 million combinations
was to be expected about 0.5 times, on average. However, there were some combinations
that were wildly more popular, 24 of which appeared over one thousand times. The most
frequent selection consisted of the numbers 7,13, 19,25, 31, 37, which was chosen 4004
times! It was not the numbers themselves, all of which, except for 25, are primes, that
appears to be cause of their popularity. More telling, these numbers form an almost
perfect diagonal on the betting form, starting at the upper right-hand corner. We can
project that throughout Germany, this sequence of numbers has been chosen over 30 000
times. Few of the players have likely suspected how small their prospects were.

Similar results in other countries were obtained by H. Riedwyl. See Hans Riedwyl,
Zahlenlotto: Wie man mehr gewinnt, Bern 1990; Norbert Henze, Hans Riedwyl, How
to Win More, Natick 1998; Hans Riedwyl, Gewinnen im Zahlenlotto, Spekirum der
Wissenschaft 3 2002, pp. 114-119.
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e the two values of the pairs (in our example, 4 and jack),

¢ the value of the singleton (queen),

e the two suits of the lower-valued pair (hearts, clubs),

e the two suits of the higher-valued pair (hearts, spades),

e the suit of the singleton (spades).
The number of possible combinations can now be obtained by
multiplying together the numbers of cards that satisfy these
criteria. One must keep in mind, though, that not all of the
characteristics are independent of one another. In particular,

e there are (l,;‘) possibilities for the values of the two pairs.

e there are then 11 choices for the singleton.

e there are (;) = 6 choices for the suits of the first pair.

e there are also 6 choices for the suits of the second pair.

e finally, there are 4 choices for the suit of the singleton.
Altogether, there are then 78 x 11 x 6 x 6 x 4 = 123 552 hands
consisting of two pairs. If we choose five cards at random from

a well-shuffled deck, then the probability of obtaining a hand
with two pairs is equal to

123552 o
2508060 0%

Thus about one in every 25 poker hands contains two pairs.

The following table contains the numbers of each type of poker
hand. There also appear in the table the values for the variant
“poker dice,” which uses five dice with the symbols 9 of spades,
10 of diamonds, jack, queen, king, and ace of clubs.
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Poker Hand Combinations with
5 cards 5 dice
Five of a Kind 6
Royal Straight Flush 4
Straight Flush 36
Four of a Kind 624 150
Full House 3744 300
Flush 5108
Straight 10200 240
Three of a Kind 54912 1200
Two Pairs 123552 1800
One Pair 1098 240 3600
Remainder 1302540 480
—

Further Literature on Lotteries

[1] Norbert Henze, 2000mal Lotto am Samstag: gibt es Kuriositaten? In: Jahrbuch
Uberblicke der Mathematik, Braunschweig, 1995, pp. 7-25.

[2] Gliick im Spiel, Bild am Sonntag Buch, Hamburg circa 1987, pp. 6-29.
[3] Ralf Lisch, Spielend gewinnen? Chancen im Vergleich, Berlin 1983, pp. 38-54.

[4] Giinter G. Bauer (ed.), Lotto und Lotterie, Homo Ludens: der spielende Men-
sch, Internationale Beitrige des Institutes fiir Spielforschung und Spielpddagogik
an der Hochschule “Mozarteum”™ Salzburg 7, Munich 1997.




A Fair Division: But How?

Two players, Jill and Jack, engage in a game of chance that stretches over
a number of rounds in each of which the chances of winning are 50:50. The
entire stake is won by the first player to win four rounds. The score stands
at 3 games for Jil to 2 for Jack, and then suddenly, due to some event,
the game has to be called off. The players agree to divide the stake fairly
based on the state of the game. But what share is fair?

The division problem belongs among the classical problems of probability
theory. It was discussed in detail in the previously mentioned correspon-
dence between Fermat and Pascal.! But there were even earlier attempts
at finding a just solution,? where the usual suggestion was to divide the
spoils according to the number of rounds won, that is, in shares of 3 to
2 in our example. This corresponds to usual business practice according
to which, for example, profits earned in common are divided in proportion
to investment. Other authors, however, took the opinion that the ratio of
division should take into account the wins that have not yet taken place.
Thus in our example, for the game to be decided, Jill must win only one
game, while Jack must win two. This could lead to a division in the ratio
2 to 1.

Both Fermat and Pascal solved the division problem, using two dif-
ferent generally applicable procedures whose results always agree. Pascal
describes his solution in a letter of 29 July 1654, which focuses on the odds

1Ivo Schneider, Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfingen
bis 1933, Darmstadt 1988, pp. 3f., 25-40.
2Ivo Schneider, pp. 2f., 9-24.
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of each player winning if the game were to be continued. Thus a single ad-
ditional round leads to a score of 4 to 2 or a tie of 3 to 3. In the first case,
Jill wins everything, while in the second case it is clearly a just solution to
divide the stake evenly. Therefore, Jill should certainly receive at least half
the stake, and for the remaining half, the chances of each player to win it
are equal. Therefore, if the score is 3 to 2, a just division should be in the
ratio 3 : 1; that is, Jill receives 756%, while Jack gets 25%.

Using this result, we may analyze other situations. For a score of 3 to
1, in which after one more round the score will stand at 4 to 1 or 3 to 2,
Jill should receive 87.5% of the stake, which is the average of 100% (for the
4 to 1 possibility) and 75% (for 3 to 2).

The principle behind Pascal’s argumentation is to associate a division
ratio with each possible score. These division ratios can be calculated one
after the other, where, as we have just demonstrated, the order in which
they are calculated is the reverse of the chronology of the game. The two
division shares, such as 0.75 and (.25, are nothing but the probabilities
of winning associated with the two players. That is, the stake is divided
according to each player’s probability of winning,

An elegant idea for calculating the two probabilities of winning directly
is due to Fermat. It was mentioned briefly in the above-mentioned letter of
Pascal. In this case as well, the basic idea is that additional games will be
played. However, this time, the number played is that necessary to produce
a winner regardless of the games’ outcomes. In the example that we are
considering, two additional rounds are played—fictional rounds, that is—
even if the first round has already determined the winner. There are four
possible results that these two rounds can produce, and all of them have
the same probability, which is therefore 1/4. Ouly in the last of the cases
shown in Table 4.1 does Jack win the match. Therefore, Jack’s probability
of winning is only 1/4, while Jill wins with probability 3/4.

Of course, one can carry out an analogous set of calculations for other
scores. If Jill must win n rounds, while Jack must win m, then an additional
n + m — 1 additional fictive rounds need to be played. After that many
rounds—and possibly earlier—one of the players will have won, while the

Next Round | Round After Next

Jill wins Jill wins
Jill wins Jack wins
Jack wins Jill wins
Jack wins Jack wins

Table 4.1. Possible courses of the game in two additional rounds.
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other will not have been able to win a sufficient number of games. Since for
each round there are exactly two possible outcomes, the n + m — 1 fictive
rounds lead to 2*T™~! different equiprobable courses that the game might
take. How many of these bring victory to Jill? That is, how many of these
game sequences are there in which Jill wins at least n of the rounds?

This is a purely combinatorial question, and it can be answered with the
assistance of the binomial coeflicients introduced in the preceding section.
If £ is the number of rounds won by Jill, then there are (“+z‘°_l) ways of
distributing the & winning rounds among the n + m — 1 rounds. Since Jill

must win at least k = n rounds to achieve victory, there are altogether

n+m-—1 n+m-—1 n+m-—1 n+m-—1
+ _ + et _

n n+1 n+2 n+m-—1
possibilities. If this number of favorable outcomes is divided by 2"*+™~1 the
number of all possible outcomes, then one obtains the desired probahility.
Jill, who wins the match with that probability, should receive exactly that
portion of the stake when the match is broken off.

If Jill has to win four rounds, and Jack only three, then Jill's share, on
the basis of six fictive rounds, will be equal to

@+G+GE 22 _
M) - 2 0.34375.

The principle behind the repeated rounds in a game of chance is that of a
series of trials, in which an experiment, namely, a single game of chance,
is repeated over and over, with repetition independent of the others. A
victory by one player is then simply an event that may or may not occur.
The number of rounds won is measured as a frequency with which a single
event can be observed within a series of trials. Of course, the probahility of
a particular event need not be exactly 1/2, as was the case in the example
presented above. To get a look at the general situation, let us assume that
the probability of a particular event occurring in an individual trial is p.

How great, then, for example, is the probability that in six attempts
the event is ohserved precisely two times? In considering all possible series
of six trials in which the event occurs exactly twice, their number is pre-
cisely the number of ways of selecting two favorable trials from among the
six trials, which is equal to (g) = 15. Since the individual trials are inde-
pendent of one another, the probability of each of these 15 series of trials
can be calculated with the help of the multiplication law. For example,
the probability that the event occurs at the first and third trials, but not
otherwise, is

p(1—p)p(1 —p)(1 - p)(1 - p) = p*(1 - p)*.
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By considering all the sequences that lead to the same final result, we
obtain the probability that the event occurs exactly twice:

@pz(l —p)* =15p°(1 - p)*.

For example, the probability of obtaining exactly two 6s in six throws of a

die is
> /5\*
15 — — = (0.2009.
> (z) < (3)

In general, the probability of obtaining an event k times in a series of n trials
is equal to (:)pk( 1- p)”_k. On account of this formula, the frequencies of
the event are said to be binomially distributed.

The formulas of the binomial distribution create a connection between
the abstract probability, whose value was obtained from considerations
of symmetry, and the frequency of events in a series of trials, which can
actually be measured. Because of the indeterminate nature of random
processes, this connection is not free of uncertainty. That is, the state-
ments that we can make are themselves expressed in terms of probabilities.
However, the degree of uncertainty can be largely overcome by making
statements about long series of trials and a large number of possible fre-
quencies. For example, one can calculate the probability of obtaining at
least 900 and at most 1100 6s with 6000 throws of a die by adding up
the associated 201 binomial terms, obtaining 0.9995.% Thus it is almost a
certainty that in 6000 throws, the number of 6s will be between 900 and
1100.

Of much greater significance than the quantitative result is the under-
lying principle, namely, the law of large numbers: in the course of a series
of trials, the relative frequencies of an event approach ever more closely
and with ever greater certainty the probability of the event. We shall have
much more to say about the law of large numbers in the next chapter.

3Fortunately, there is a simpler way to obtain this result. However it is based on
more advanced mathematics and so is not discussed here. We will have more to say on
this issue in Chapter 13.
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The Red and the Black:
The Law of Large Numbers

After ten red numbers in a row have won at the roulette wheel, the crowd
shifts its bets to the black. The reason is clear: after such a large number of
consecutive red numbers, one expects the “law of averages™ to kick in. After
all, the law of large numbers states that over time, the balance between the
red and the black should average out. But wait a moment! Each spin of
the roulette wheel should be independent of the others, since the ball has
no more “memory” then dice have. It follows thal even after red has won
ten times in a row, the odds for the next turn of the wheel to produce black
should be the same as those of producing red. How can this paradoz be
explained?

The main attraction in every European casino is the roulette tables. There
hardly seems to be much variety in betting on one of 37 numbers or a group
of them and then watching to see which number the ball lands on when the
wheel is spun. But if one thinks in those terms, one fails to appreciate the
heady atmosphere that surrounds the roulette table. One is immediately
taken by the sumptuous interior of the casino and the elegant clothing
draping the backs of the guests; the large sums of money in play, shoved
nonchalantly across the table in the form of chips; the heavy carpets and
curtains that dampen the hubbub of the crowds; all dominated by the cry
of the croupier and the clattering of the ball as the wheel turns. Roulette
is a pure game of chance, whose odds are in many aspects symmetric: it
makes no difference whatsoever whether one bets on 17, 25, or 32. And the
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simple odds of winning with red, black, even, odd, “1 to 18,” or “19 to 36"
are equiprobable. However, a player can control the risk factor. In betting
on a single number, the payoff is 1+ 35 times the amount wagered, though
the odds of winning are correspondingly small, at 1/37." With the simple
wagers the situation is reversed: the probability of winning are relatively
high, at 18/37, but the payoff is only twice the amount wagered.

Just as in dice games, the probabilities in roulette depend on the sym-
metries of the game, and thus on more or less abstract considerations.
These probabilities are connected to what happens in the real world only
through the law of large numbers, which is surely among the most im-
portant laws for the calculation of probabilities: in a series of trials, the
relative frequencies of an event approach the probability of the event ar-
bitrarily closely. For example, the proportion of red numbers over a long
series of roulette games moves generally in the direction of 18/37. The
law of large numbers thus creates a link between theory and practice, that
is, between the abstract notion of probability on the one hand and the
experimentally determinable relative frequencies on the other.

As simple and plausible as the law of large numbers may seem, it is
invoked incorrectly again and again. This is especially true in the situation
in which an event is over- or underrepresented in a series of trials that is
underway. How is it possible for such an imbalance to equalize, as predicted
by the law of large numbers? It seems more likely that compensation in
the opposing direction should have to take place. But is such compensation
truly necessary? That is, after an excess of red numbers in roulette, can
equalization take place only if thereafter, fewer red numbers appear than
are to be expected based on the laws of probability? Let us take, for
example, a number of series of 37 spins, each of which should yield, on
average, according to the law of large numbers, 18 red numbers. But
if in the first series, 25 red numbers appear, then red has exceeded the
theoretical average by 7. If in the second series red appears 23 times,
then the situation is even worse, since now the excess is 7+ 5 = 12. A
countervailing compensation has not taken place. Nevertheless, the relative
frequency has moved in the direction of 18/37, namely, from 25/37 to
25 4 23/74 = 24/37.

The explanation in actually quite simple: the law of large numbers
predicts only that the relative frequencies move in the direction of the
probabilities. A relative equalization takes place whenever an “outlier”
is followed by a series that is less unbalanced. Since outliers remain the
exception, the relative equalization is always very probable. Yet despite

IIn European roulette, the wheel contains the numbers 0 through 36. The 0 is special,
and colored green. Translator’s note: Half of the remaining numbers are red, half black.
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the relative equalization, the absolute imbalance can increase, as we saw in
our example.

One might well ask what it is that legitimates our speaking of the law
of large numbers as a law. There are two reasons:

e one may observe empirically that in series of trials in which a single
experiment is repeated, the relative frequencies of an event have a
definite value toward which they move, even if the series is again
started from the beginning. In this sense, one speaks of a stability
of frequencies. The law of large numbers attempts to explain this
empirical observation, and it does this by stating that the definite
values in question are the probabilities of the event.

e from the mathematical point of view, the law of large numbers arises
from the basic assumptions of probability theory, which means pri-
marily the addition and multiplication laws. These allow us to de-
termine how rapidly and with what degree of likelihood the relative
frequencies will approach the probabilities. This can be stated rela-
tively complexly, though precisely, with the formulas of the binomial
distribution, which we met in the previous chapter.? In this sense,
the law of large numbers was proved mathematically around the year

1690, by Jakob Bernoulli.?

Thus theory and practice coincide, which is just what is required of a
model in the exact sciences. Here the probability model makes statements
that are more precise than the corresponding observations. But these pre-
dictions, such as those made by the formulas of the binomial distribution,
are confirmed in practice when series of trials are made.

There are various ways of formulating how quickly and with what de-
gree of certainty the relative frequencies will approach the probability. A
far-reaching statement, known as the strong law of large numbers, was dis-
covered (that is, derived mathematically from the axioms of probability
theory) in a special case in 1909 by Emile Borel (1871-1956), and in 1917
in general form by Francesco Cantelli (1875-1966):*

2Quantitative interpretations of the law of large numbers will be more easily derived
when we have more fully developed the concepts and methods of probability theory. We
will therefore avoid a more precise formulation at this juncture.

3Ivo Schneider, Die Entwicklung der Wahrscheinlichkeitstheorie von den Anfingen
bis 1933, Darmstadt 1988, pp. 118-124; Herbert Meschowski, Problemgeschichte der
Mauathematik, volume II, Zurich 1981, pp. 185-187.

4Information on the origins of the strong law of large numbers and a 1928 controversy
over who had priority of discovery can be found in E. Senteta, On the History of the
Strong Law of Large Numbers and Boole's Inequality, Historia Mathematica 19, 1992,
pp. 24-39.
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If two numbers are specified, one the maximal deviation for the
relative frequency, and the other the largest permissible proba-
bility of error, then there exists a minimal number of trials after
which in “most” sequences of trials of that length, the relative
frequency does not exceed that maximal deviation. Stated more
precisely, the event that a series of trials will exceed the maxi-
mal deviation at least once at some point beyond that minimal
number has probability at most the given probability.

It is important to emphasize that the probability relates to the event
that comprises the deviations from all following trials. For example, if the
(largest permissible) probability is 0.01, and the maximal deviation is 0.001,
then with probability 0.99, a roulette permanence® will behave in such a
way that from the minimal number of trials, all relative frequencies of “red”
will be in the range from 18/37 —0.001 to 18/37+0.001. Permanences with
outliers beyond that minimal number appear with a probability of at most
0.01.

The question that we have posed has actually already been answered.
Independence and the law of large numbers are not contradictory. That
would be the case only if the law of large numbers predicted an absolute
equalization. But there is no law of absolute equalization. Even after
ten “red” numbers in a row, one can continue with confidence to bet on
red, if one so desires, even at the risk of being considered an incorrigible
ignoramus by the other gamblers. And one will be so considered, as a
sampling from a book on roulette makes clear, a book that, we should
mention, was published by a reputable firm:%

The mathematicians of centuries past made a simple assertion:
“In roulette, every spin of the wheel is new. Each future event
is in no way influenced by those that came before.” If that were
true, then the roulette problem could be solved mathematically.
But since that is not the case, one cannot solve the problem with
the aid of mathematics alone.

Namely, if each spin were new, as the mathematicians assert,
if chance were truly to know no law, then how is it possible that
approximately 500 black and 500 red numbers appear at the
roulette table? Why not 1000 black one day, and 1000 red the
next? And why has our CDC 6600 supercomputer (the same
model that NASA uses), provided with 37 random numbers,

5A roulette permanence is jargon for a sequence of numbers obtained from the spins
of the wheel.
6Thomas Westerburg, Das Geheimnis des Roulette, Vienna 1974,
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generated in a matter of minutes a permanence of 5000000
spins in which after each sequence of a thousand numbers it
prints out the result, which is roughly divided into 500 red
and 500 black? Nonetheless, the mathematicians cling to their
beliefs, following the traditions of the previous century: A series
of 1000 black or red is not impossible! It is now our turn to smile
on them with pity.

We see, then, that there are two main objections raised against math-
ematical probability theory: the spins of the roulette wheel are not truly
independent of one another, and the predictions made on the basis of prob-
ability theory do not correspond with reality, for example, in sequences of
1000 red or black numbers.

It is definitely worth our while to give serious thought to these objec-
tions. The starting point, that spins of the roulette wheel do not influence
one another, cannot be proved mathematically at all. That the ball has no
“memory,” as we like to say, is nothing more than a conclusion based on
our experience with mechanical processes. A crumpled feather changes its
internal state in addition to its outward form, and so it “knows” that it
“wants” to return to its original state. In the realm of atomic physics the
situation in more complex. Does the nucleus of a radioactive isotope split
when an internal clock—invisible to us—tells it that its time is up? Or is
it a matter of pure chance, a nucleus that throws the dice, so to speak, and
when a certain number comes up, spontaneously splits?

Such suppositions could make the acceptance of such a model plausible,
but nothing more. In contrast, the only way to verify a model consists
in checking the predictions of the model through empirical observation
to determine whether observation corresponds to prediction. And such a
correspondence occurs only when one assumes that the individual results of
the wheel are independent of one another, that is, when the multiplication
law can be applied to the different spins of the wheel. Thus in 5000 series
of trials of 1000 red and black numbers each, the distribution of the colors
will behave as predicted by the formulas of the binomial distribution. The
mathematics does not “cling” to unproved facts. Indeed, the results must
prove themselves over and over, every day, in applied statistics as well as
in the casino. And that is precisely what they do.

To be sure, the author of the book on roulette cited above is not alone.
A very nice example is to be found in the last lines of Edgar Allan Poe's
(1809-1849) “The Mystery of Marie Roget,” from the year 1842:

Nothing, for example, is more difficult than to convince the
merely general reader that the fact of sixes having been thrown
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twice in succession by a player at dice, is sufficient cause for
betting the largest odds that sixes will not be thrown in the
third attempt. A suggestion to this effect is usually rejected by
the intellect at once. It does not appear that the two throws
which have been completed, and which lie now absolutely in the
Past, can have influence upon the throw which exists only in
the Future. The chance for throwing sixes seems to be precisely
as it was at any ordinary time—that is to say, subject only to
the influence of the various other throws which may be made
by the dice. And this is a reflection which appears so exceed-
ingly obvious that attempts to controvert it are received more
frequently with a derisive smile than with any thing like respect-
ful attention. The error here involved—a gross error redolent of
mischief—I cannot pretend to expose within the limits assigned
me at present; and with the philosophical it needs no exposure.
It may be sufficient here to say that it forms one of an infinite
series of mistakes which arise in the path of Reason through her
propensity for seeking truth in detail.




Asymmetric Dice:
Are They Worth Anything?

Can a single die that is irregular in form or material nonetheless be used
as a valid replacement for a symmetric die? That is, with an asymmetric
die, can one of the siz numbers 1 to 6 be chosen randomly in such a way
that all sixz results are virtually equiprobable?

In our previous investigations we have always assumed our dice to be ab-
solutely symmetric. The Laplacian model of probability allows nothing else!
In practice, though, it is unrealistic to expect that a normal die will not
be at least a bit asymmetric, even leaving aside the possibility of nefarious
manipulation.

In casinos, on the other hand, in games like craps, precision dice are
used, which are machined to a tolerance of 0.005 millimeters.! In order
to achieve this degree of precision, the edges and corners of casino dice
are not—in contrast to garden-variety dice—rounded off. Even the holes
forming the dots on the dice have been taken into account. They are filled
with a material of the same density as that of the dice themselves. To make
manipulation difficult, they are made of a transparent material. Moreover,
they are numbered and inscribed with the casino’s monogram. Dice that
are no longer usable are so marked.

But what about dice that do not even begin to satisfy this Platonic
ideal, perhaps because they have been loaded with a small piece of metal?
In such cases, the Laplacian model no doubt fails to be satisfied, but the

1John Scarne, Complete Guide to Gambling, New York 1974, p. 261. Manipulation
of dice and other forms of deceit are discussed starting on page 307.
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situation is not hopeless, since the laws of probability can be extended to
account for asymmetric random processes. What, then, is the probability
of throwing a 6 with an asymmetric die?

In practice, there is but one way to determine this probability: throw
the die, and the more often, the better.? Just as with a symmetric die, one
can observe the relative frequencies. That is, as a series of trials progresses,
the variation in the relative frequencies of an event becomes less and less.
These frequencies approach a particular value. If one repeats the series of
trials, then in spite of differences due to chance, a similar picture results.
In particular, the relative frequencies again approach the same limiting
value; that is, the deviations between the relative frequencies of both series
of trials become arbitrarily small as the number of trials increases. These
limiting values are invariants of the structure of the die. They are concrete
constants associated with the die used in the experiment.

One may observe analogous results in all random experiments, so that
frequent repetition of a random experiment can be used as a measuring
device. What is measured is probability, and indeed, that is true by defini-
tion. That is, just as is done in physics, one defines the notion of probability
by establishing a method by which it can be measured. The fact that the
probability cannot be exactly determined as it can in the case of a sym-
metric die is completely acceptable. After all, when physical quantities are
measured, there is always a certain amount of “experimental error.” In re-
ality, the series of trials need not be actually carried out, in which case the
probabilities are treated as unknown quantities that can be theoretically
determined.

Thus every die, no matter how misshapen, possesses six fundamental
probabilities pi,pa,...,ps. Other than the fact that these probabilities
need not all be 1/6, most of the familiar properties from the Laplacian
model hold here as well: all probabilities are numbers between 0 and 1,
where 0 is the probability of the impossible event, and 1 the probability
of the certain event. Furthermore, the addition and multiplication laws
remain valid. Thus the probability of obtaining an even number is p, +
Pa+ps. Moreover, the sum of the six probabilities is equal to the probability
of a certain event, yielding the identity p; +ps +-- -+ pg = 1. If one throws
the die twice, then those are two independent events. As a result of the
multiplication law, the probability of obtaining a three with the first throw
and a six in the second is p3 x pg.

Now that we know how to handle asymmetric dice, we can solve the
problem posed at the beginning of this chapter. To simplify the situation,

2 Approaches to a geometric solution are discussed by Robert Ineichen, Der schlechte
Wiirfel: ein selten behandeltes Problem in der Geschichte der Stochastik; Historia Math-
ematica 18, 1991, pp. 253-261.
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let us first consider a slightly bent coin, whose condition leads us to suspect
that the events “heads” and “tails” may not be equiprobable. We denote
the probability of heads by p, with the result that the probability of tails is
1 — p, which we may abbreviate as g. In the ideal case of a balanced coin,
we would have the relation p = ¢ = 1/2.

Yet even in the case of our bent coin, it is possible to use it to create
1:1 odds. One simply tosses the coin a large number of times, counts
the frequency with which heads appears, and makes the decision based on
whether the number of heads was even or odd. As an example, let us sup-
pose that we have an asymmetric coin for which the probability of tossing
heads is 0.6. Already with the second toss, a considerable equalization of
the probabilities has taken place:

s the probability that the frequency of heads is even (two heads or two
tails) is
0.6 0.6+ 0.4 x04=0.52.

e the probability that the frequency of heads is odd (heads—tails or
tails—heads) is
0.6 x0.4+0.4x0.6=0.48.

After three tosses, the numbers are 0.504 and 0.496, and after four
tosses, 0.5008 and 0.4992. And what if the initial probabilities are some-
thing altogether different? After all, in the case of a real coin, the prob-
abilities are unknown. In that case, we proceed from a general random
experiment that can end with two possible results, which we can call “yes”
and “no.” If the associated probabilities are 1 + d/2 and 1 — d/2, then the
(possibly negative) number d is a measure of the deviation from symme-
try. That is, the smaller the absolute value of d, the less the experiment is
likely to deviate from the symmetric ideal case. If two independent yes—no
random decisions whose deviations from symmetry are given by d and e
are made one after the other, this leads to the following probabilities:

e two yes or two no:

(I+d)(L+e) (1-d)(l-e) 1+de
4 * 4 o207

® one yes and one no:

(I+d)1—e) (L-d){l+e) 1-de
4 * 4 T2
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Thus the measure of deviation from symmetry in the total experiment
is equal to the product d x e of the individual measures d and e. In our
example of the bent coin with probabilities 0.6 = 1 + 0.2/2 and 0.4, this
measure was (.2. Therefore, in multiple flips of the coin, the probability of
a yes decision is

o (1+40.22) /2 = 0.52 for two tosses,

. (1 + 0.23) /2 = 0.504 for three tosses,
o (1+40.2%) /2 =0.5008 for four tosses,
o (140.2%) /2 = 0.50016 for five tosses,

and so on.

Thus even with such an unfair coin, a fair, equiprobable decision can
be made. The only condition is that each of heads and tails can appear.
Thus in a 90 : 10 situation, which means that d = 0.8, after 20 tosses, the
probabilities are (0.5058 and 0.4942.

We shall not consider the more complicated case of a die in great detail.
However, the result is largely analogous. We begin with a die whose basic
probabilities are py, pa, . . ., pg, all in the range from 1—d/6 to 1+d/6, where
d is a number in the range from 0 to 1. In order to obtain a result among the
numbers 1,2..., 6, one could write down the six numbers in a circle, and
move a counter around the circle the number of steps equal to the number
that appears on the die. One obtains the same result by considering only
the remainder upon dividing the sum of the numbers that appear on the
die by six. The longer one tosses the die, the more the probabilities of
the different results approach one another. It can be shown® that after
n throws, the probabilities for the six individual fields all lie in the range
from 1 —d"/6 to 1+ d" /6. As in the case of the coin, this leads slowly but
surely to an equal distribution (up to a small error) of the probabilities.
An asymmetry in the die has thus been overcome. In contrast to the case
of the coin, the six basic probabilities cannot be too large. If a die is so
loaded that one event has a probability of 1/3 or greater, then it is no longer
certain that the procedure described will lead to the advertised result.

30ne can proceed as in the case of a coin. That is, one considers two random
experiments with the results 1,2,...,6. If the probabilities of a random decision lie
between 1—d/6 and 1+4d/6, and that of a second decision between 1—¢/6 and 1+4¢/6, then
the probabilities of the combined experiment lie between 1 — de /6 and 1 + de/6. In the
calculations that follow, one represents the probabilities in the form 14d1/6,...,14ds /6,
with
dy+---+dg =0 and |di],...,|ds| <d

{and analogously for the second experiment).
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Probability and Geometry

Suppose that one tosses a stick into the air in a room whose floor is made
of parallel boards of uniform width, and bets are made as to whether the
stick will eross one of the lines between two boards, one player betting that it
will, the other that it will not. What are the odds for each of these players?

This question goes back to a quotation from the year 1777. It is known
as Buffon’s needle problem and was first presented in 1773 by Comte de
Buffon (1707-1788) before the Paris Académie des sciences. An additional
condition is that the length of the stick should not exceed the distance
between two of the boards.

Buffon’s needle problem is doubtless one of the classics of probability
theory. It is considerably different in kind from the questions that we have
been examining thus far. Although there are only two results, namely, that
the stick crosses a line or does not, the symmetries and equiprobabilities
that underlie the Laplacian model involve geometric data for which the
number of possible cases is infinite:

¢ every angle between the stick (or its extension if necessary) and the
lines between the boards is equiprobable.

¢ the midpoint of the stick can land with equal probability at any point
on the floor, which translates into the distance from the midpoint to
the nearest line. That is, every possible distance between 0 and the
achievable maximum, namely, half the distance between neighboring
lines, is equiprobable.

37
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The mathematical consequences of these dual and mutually indepen-
dent possibilities are more complex than those that we have seen. Because
there are infinitely many angles and distances, we cannot take the approach
that these are all equiprobable events. The infinite number of possibilities
results in the probability for any single angle or single distance being equal
to 0, which is not to say that the associated event is impossible.

One obtains positive probabilities by associating events with entire re-
gions, that is, intervals. For example, if we divide the circle into six equal
segments, then each segment possesses the probability 1/6. That is, in a
single experiment, the probability of the stick landing with an angle belong-
ing to one of the six segments is 1/6. In general, one can find a probability
for an arbitrary interval that depends only on the geometric “size” of the
interval, by which we mean the relative size in relation to the entire inter-
val. The addition law for such “geometric” probabilities then amounts to
nothing more than adding lengths.

But how is one to treat such geometric probabilities mathematically?
For example, in Buffon’s needle problem, how can the assumptions about
the equiprobabilities of angles and distances lead to the desired probability?
Why, based on empirical experiment, is that probability equal to 2/m =
0.6366 in the case of a stick of length equal to the distance between boards?

Before we delve into the not-so-simple needle problem, we would like
to consider a similar question, one that also goes back to Buffon: a coin
of radius r is tossed, and it lands on a tiled floor, the tiles of which are
squares of side a. What is the probability that the coin does not touch a
line between tiles (we consider these lines to have zero width)?

This problem is easier to the extent that only one geometric value is
needed to describe the result of tossing the coin, namely, the point on the
floor on which the center of the coin lands. Here the situation is the same
for each tile (see Figure 7): the event that the coin does not touch a gap
occurs when the center of the coin lies within a square centered on the tile
whose sides, parallel to those of the tile, are at a distance the radius of

a

Figure 7.1. The ways in which a coin can land on a tiled floor.
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the coin r from those of the tile. Such a square exists only if the length a
of the tiles is greater than the diameter 2r of the coin. Since every point
on the floor is an equiprobable landing site, the probability that no gap is
touched by the coin is equal to the ratio of the area of the smaller square
to that of the tile, that is, (a — 2r)*/a®.

By changing the experiment a bit, we can interpret other surface areas
as probabilities. For example, if we provide our square tiles with a design
in the form of an inscribed circle, then the probability that a random point
chosen on a tile will be inside the circle is equal to the ratio of the area of
the circle to that of the square, that is,

Tl 2 T
E;QZ) =7 = 0.7854

This has two significant consequences relating to the law of large numbers:

¢ as a probability, the number 7/4 can be approximated by the rela-
tive frequencies occurring in a series of random experiments. Con-
sequently, the number 7 can also be experimentally approximated
using random experiments.

e the experimental nature of calculating areas is quite universal. In-
stead of circles, we could provide our tiles with other regions. The
relative frequencies that occur in a series of trials approach the area
to arbitrary precision (with an arbitrary degree of certainty).

In contrast to the situations that we have investigated thus far, in Buf-
fon’s needle problem we require two random parameters, namely, the angle
between stick and line, and the distance from the midpoint of the stick to
the nearest line. Though the mathematical details are more complicated,
the principle of calculating the relaltion between two areas can again be
used (see “Calculating Buffon’s Needle Problem”).

Py
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Calculating Buffon’s Needle Problem

Let L denote the length of the stick, a the distance between two
lines (the width of a floorboard), ¢ the angle between stick and
line, and x the distance between the midpoint of the stick and
the nearest line. Then we see from the left-hand figure that a
line is intersected exactly when the inequality

L -
zsmqa__r




7. Probability and Geometry

is satisfied. If we now represent all the equiprobable pairs of
values for z (from 0 to a/2) and ¢ (from 0 to #) in a rectangle,
as depicted in the right-hand figure, then the pairs of values
that represent a “hit” are those in the region between the sine
curve and the horizontal axis. The associated area can be easily
computed with a definite integral. The desired probability is
again obtained from the relative area of this region to that of

the entire rectangle. It is equal to 2L /am.

rolm X
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not a hit

hit




Chance and Mathematical
Certainty: Are They
Reconcilable?

Can the sequence of digits in the decimal expansion of a number such as
T = 3.14159265358... be just as random as the results of a sequence of
throws of the dice?

An important characteristic of randomness is that its results should be
unpredictable. Thus the sequence of decimal digits of the number 7 are
not, in fact, random. For even if particular digits of 7 are unknown, they
can be calculated as needed. However, if one did not know the context of
the sequence of digits

3, 1, 4, 1, 5 9, 2 6 5 3, 5, B8,

then the digits would appear to possess a random nature. That is, a formula
that would allow one to reproduce the digits of the sequence would be so
complicated that one could hardly hope to find such a formula without the
background knowledge of the source of the sequence.

On the other hand, how random is the result of throwing dice? After
all, the physical processes that underlie the toss of a die can be completely
described in terms of the laws of mechanies. If one understood all aspects
of the situation, then it should be possible in principle to calculate in
advance the precise movement of the die. Is it the case, then, that with
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dice the randomness is also only subjective, that is, the result of a lack
of information? The leading initiator of such a viewpoint was Laplace,
who shaped the advances in mechanies and astronomy of his time into a
deterministic world view. In 1783, he noted the following:!

Thus the appearance and movement of comets, which today we
recognize as subject to the same law that ensures the cycle of
the seasons, were once seen, by those who considered stars to
be meteors, as the result of chance. Therefore, the word chance
expresses nothing more than our lack of knowledge about the
causes of events that we see appear and follow one another in
an order that is invisible to us.

Consequently, Laplace saw probability theory as a tool that provides a
degree of orientation in the face of lack of knowledge of causal relationships,
so that the resulting ignorance can be partially overcome. Thus, with the
law of large numbers, rather precise statements about the results of a series
of trials in a game of chance can be made, without the requirement that
the physical course of the throw of the dice be analyzed.

If chance, then, is no more than a subjective phenomenon, then the
decimal digits of &« are also random, though perhaps not quite so random
as the results of throwing a die. But is there no such thing as objective
randomness? From today’s viewpoint, the answer must be answered in the
affirmative, on the basis of discoveries of physics and mathematics.

Probability theory obtained its first significant application in the nat-
ural sciences in kinetic gas theory, founded in 1859 by James Clerk Maxwell
(1831-1879). The temperature of a gas is interpreted as a function of the
motion of the molecules of the gas, and therefore, can be derived in principle
from the laws of mechanics as they relate to motion. What is new, here, is
the complexity resulting from the astronomical number of particles, which
makes explicit calculation impossible. Nonetheless, mathematical results
can be obtained if one views the wvelocity of a single particle as random.
Macroscopically measurable quantities such as volume, pressure, tempera-
ture, and chemical composition can be explained by the average behavior
of the molecules. In particular, the temperature can be described as the
average kinetic energy of the molecules. As with any other model, kinetic
gas theory must be tested against the results of experiment. And it passes
the test. Here is an example involoving the notion of entropy: a container
is filled with two different gases, one after another, in an environment of
weightlessness. Then soon, the gases combine with each other into a uni-
form mixture. Is the reverse direction possible? That is, can the mixed

Tvo Schneider, Die Entwicklung der Wahrscheinlichkeitsrechnung von den Anfingen
bis 1933, Darmstadt 1988, p. T1.
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gases separate on their own? There is nothing in the laws of mechanics that
prohibits this. The probabilistic model states that while such a separation
can happen in principle, the probability is so small that it would almost
never happen, and thus macroscopically, the outcome is determined. A
simpler version of this situation can be seen in shuffling two large packs of
cards, one of red cards, the other of black, so that they are mixed. The
event that a later shuffle will separate the red from the black is possible,
but extremely unlikely. That is the effect of the law of large numbers.
Does randomness have an objective character in the context of the ki-
netic theory of gases? The fact that the data of a system are in practice
concentrated on a fundamental core of average values such as the tempera-
ture demonstrates an existing subjective state of ignorance, nothing more.
However, such a system can in principle be calculated in advance based
on a mechanistic interpretation and the deterministic laws of physics, even
though the practical realization of such a project is just as hopeless as in
the case of throwing dice. That is, one may nurture the hope of being
able to explain apparently random processes of macrophysics through the
deterministic laws of microphysics. That this hope must be dashed even
theoretically has been known since the development of quantum physics
in the 1920s by Werner Heisenberg (1901-1975) and Erwin Schrodinger
(1887-1961). According to that theory, randomness is an insuperable ob-
stacle to the observer of events, and the apparently deterministic laws of
macrophysics are revealed as statistical laws of microphysics. This inability
to predict outcomes is encapsulated in the Heisenberg “uncertainty prin-
ciple,” which asserts that the location and velocity of a particle can be
determined only up to limited precision, since every measurement—though
it be “only” that of the light being used—has itself an effect. In Heisen-
berg's words, this means that, “In the precise formulation of the law of
causality—If we know the present, we can calculate the future’—it is not
the conclusion that is false, but the hypothesis.” Since the entirety of the
state parameters that determine the model can never be precisely mea-
sured, statements about the future development of a system are always
subject to randomness. That is, randomness is objectively present.

In the realm of classical mechanics, we now return to our dice: the
apparently simple toss of a die, with all its bouncing and spinning, is in-
fluenced by so many factors that it is practically impossible to predict
its course. Even two tosses with apparently identical initial conditions
can have completely different outcomes, since even the smallest differences
can multiply, eventually leading to extremely divergent behaviors: “Small
causes, large effects.” One can thus see a special form of causal relationship
in the randomness of a die, in which the occurrence or nonoceurrence of an
event depends on unobservable tiny influences. It is therefore impossible
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to predict how these influences will affect the outcome of a concrete trial.
Causal relations that are sensitive in this way to very small perturbations
are called chaotic. They represent, as we now know, much more the nor-
mal state of affairs than the orderly, continuous relations that appear in
the classical interpretations of natural law.

Randomness in chaotic relations is actually something purely mathe-
matical. By this we mean that chaos can be completely explained on a
mathematical level with the aid of the deterministic formulas of classical
physics. The sort of chaos that even the simplest formulas can “cause” is
known to all who have seen the popular images of fractal geometry. Al-
though regularities are to be seen in the form of self-similar images, it is
impossible to provide a simple description of the image without knowing
the fundamental formula. Just as with the number =, and here we return
whence we began, we may here speak of randomness, though only on a
subjective level.

Just as in kinetic gas theory, it can be quite useful to employ methods
of probability theory even when a random influence is not at all objectively
guaranteed. Even in everyday life, there are many such situations whose
courses are unforeseeable at a sufficiently early point in time:

e the make of the first car stopped at a red light;

e the amount of claims made against an insurance company in the
course of a year;

e the amount of rain in the course of a day;

e the number of parking tickets that a habitual scofflaw received in the
course of year;

e the number of workers in a firm who called in sick.

We have already seen in our examination of Buffon’s needle problem
that it can be reasonable to bring randomness into play in mathematics.
It is not only m, but the area of arbitrary planar regions that can be de-
termined through random experiments. Even when the subject turns to
prime numbers, it can be advantageous to consider divisibilty properties
from the point of view of randomness. For example, a randomly chosen
integer is even with probability 1/2. From this viewpoint, it is possible
to make estimates of how frequently, within a specified range, integers ap-
pear with particular properties, such as prime numbers, twin primes (two
primes, like 41 and 43, that differ by 2), or integers with a specified number
of prime divisors.
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We have up to now been able to discover phenomena that can be con-
sidered truly random only in quantum mechanics. Thus there is no a priori
moment at which an atomic nucleus of a radioactive isotope should decay.
But can there be true chance within mathematics, which appears to be
s0 certain in all its aspects? In the historical development of chance and
probability there has been considerable difficulty in stating its principles
satisfactorily. Thus at the beginning of the twentieth century, probabil-
ity theory consisted of a hodgepodge of methods for solving a variety of
problems. But there was great uncertainty with regard to the foundations
of the field: are the laws of probability laws of nature, such as those of
physics, or is there an abstract theory whose objects are so idealized, as in
the field of geometry, that they can be considered outside of the material
world? In that case, the notions of randomness and probability must be
able to be explained mathematically in the same way as length, area, and
volume. Concrete trials and series of measurements have no place in such
explanations, no more than in geometry would a volume be defined as the
result of submerging the shape in question in a tub of water and measuring
the displacement.

Since the certainty of mathematics, on the one hand, and the uncer-
tainty of randomness and probability, on the other, appear to exclude each
other, mathematical authorities on the subject tended at the beginning of
the twentieth century to view probability theory as a physical disciplne.?
In 1919, the mathematician Richard von Mises (1883-1953) sought a way
to provide a mathematical foundation for probability theory. Mises studied
relative freqencies in series of trials. However, he did not base his studies
on real series of trials, but on sequences of results that could come from
a series of trials. For this, Mises required that the sequence of results be
irregular. But how does one formulate such a criterion precisely? How
irregularly must a sequence of integers such as

2Here is a relevant quotation form the year 1900: “Through investigations into the
foundations of geometry the task suggests itself to treat according to this model such
physical (!) disciplines in which even today mathematics plays such a prominent role;
these are primarily probability theory and mechanics.” This quotation comes from a
famous lecture given by David Hilbert (1862-1943) at the second International Congress
of Mathematicians. The lecture presented a list of the important open mathematical
problems of the time, and the sixth of these was Hilbert’s just-quoted suggestion. Later,
we shall have something to say about some of the other problems. See also Ostwalds
Klassiker der exakten Wissenschaften 252, Leipzig 1976 (Russian original 1969); Jean-
Michel Kantor, Hilbert’s problems and their sequels, The Mathematical Intelligencer
18/1 1996, pp. 21-30.
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be constructed for it to be considered random? Regular sequences such as
1, 2, 3, 4, 5 6, 1, 2, 3, 4, 5 6, 1, 2, 3,

are assuredly not random. But for what sequences does the opposite hold?

In the end, von Mises’s approach could not be deemed satisfactory. His
approach of abstracting the measurement process for probability mathe-
matically broke down. It was only decades later, namely, in the 1960s,
that Gregory Chaitin and Andrei Kolmogorov (1903-1987) independently
succeeded in providing a formal definition of randomness in sequences of
integers.? What is crucial for the randomness of a sequence of integers is
how large a computer program would have to be to generate the sequence.
Thus random sequences in their infinite length could not be generated by
a finite program; thus the sequence of integers in the decimal expansion
of 7 is not random. And for finite heginnings of sequences, there must be
no general method of generating the integers with programs that are “too”
simple. In other words, it should be impossible to compress the sequence
too greatly.*

As interesting as such a characterization of randomness may he, it holds,
surprisingly, hardly any significance for mathematical probability theory.
A mathematical model of probability can be constructed without reference
to randomness.

Thus already in 1900, the mathematician Georg Bohlmann (1869-1928)
was able to reduce the known laws and techniques of probability theory to a
system of basic properties: in addition to establishing that probabilities are
values between 0 and 1 associated with events, his system primarily encom-
passes the addition and multiplication laws. In and of itself, Bohlmann’'s
approach is not at all unusual, just as Kepler's laws can be derived from the
basic laws of mechanics and the theory of gravitation. What is erucial here
is that Bohlmann changed the meaning of these fundamental properties
by taking them as definitions. That is, whatever satisfies these properties
is considered a probability. And even the independence of two events is
no longer understood as the lack of “mutual influence.” Two events are
considered mutually independent in the sense of Bohlmann if they satisfy
the multiplication law, that is, if the probability that both events occur

3(Chaitin has written two popular accounts of his work: Randomness and mathemat-

ical proof, Scientific American 232:5 1975, pp. 47-52, and Randomness in arithmetic,
Scientific American 259:1 1988, pp. 80-85.

4From an information-theoretic point of view, compression is possible for sequences—
even those randomly generated—whenever the numbers that appear do so with differing
frequencies. For example, a sequence that consists of 90% zeros and 10% ones can be
compressed by storing the distance between the ones. Since the origninal sequence can
be thereby reconstructed, no information is lost.
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is equal to the product of the individual probabilities. Further properties
of probabilities, such as the law of large numbers and the methods for
measuring probabilities based thereon, are the result of, and only of, the
logical conclusions that can be drawn from the fundamental properties—an
axiomatic system, that is—which have here been elevated to a definition.

A weakness of Bohlmann’s conception was that the notion of event
was tacitly assumed. This difficulty was overcome in 1933, when Andrei
Kolmogorov put forward a purely mathematical axiomatic system and an
exposition of probability theory built upon it. Kolmogorov used exclu-
sively mathematical objects, namely, numbers and sets. Probability theory
thereby obtained a purely mathematical and thus universally applicable
formulation, and was thereby transformed, like arithmetic, geometry, and
analysis, into what is indisputably a mathematical discipline.

Kolmogorov’s ariomatic system is based on the idea that every random
experiment can be associated with a set of possible outcomes. In the case
of dice, be they symmetric or not, the outcomes correspond to the integers
from 1 to 6. One thus takes as the set of outcomes the set {1,2,3,4,5,6}.
Every event can now be understood as a subset of the set of outcomes,
namely, that consisting of the “favorable” outcomes. For example, the
event of throwing an even number is represented by the set containing all
even numbers between 1 and 6, which is the set {2,4,6}. The certain
event encompasses all possible outcomes and therefore corresponds to the
set {1,2,3,4,5,6}. The impossible event occurs for no outcome, and thus
is represented by the empty set { }.

Every event is associated with a probability. In deference to the Latin
probabilitas and the English probability, probabilities are traditionally de-
noted by the letter “P.” The event whose probability is being considered is
placed after the “P” in parentheses, and the expression P(x) is read “P of
z.”% The statement that the certain event has probability 1 is abbreviated
by the formula

P({1,2,3,4,5,6}) = 1.

The probability of rolling a 6 corresponds to P({6}), while P({2,4,6})
stands for the probability of rolling an even number. The concrete values of
these probabilities are of no importance to the theory; in the end, physical
formulas are also not dependent on concrete values. The values could, but
need not, agree with those of the Laplacian model.

The approach of describing events hy subsets of a fundamental set makes
it possible to formalize, completely and mathematically, statements about

SMathematically speaking, P is a mapping from the set of outcomes into the set of
real numbers.
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events and probabilities. Let us take as an example the formulation of the
addition law.

Let A and B be two incompatible events. With respect to the sets
A and B, this means that the two sets have no element in common, and
therefore, their intersection A N B is empty. For the two events can then
never both occur in the same trial only if no event is “favorable” for both.
Analogously, the result that one of the two events occurs is represented
by the set union A U B, which contains both the set A and the set B.
Formulated mathematically, the addition law can be stated thus:

for two events A and B with AN B = { }, one has

P(AUB) = P(A) + P(B).

For example, with a single die,
P({2,4,6}) = P({2,4}) + P({6}).

According to Kolmogorov, probabilities are defined by considering a
system of subsets and their associated numbers P( ) as random experiments
complete with events and probabilities when certain conditions are satisfied.
These basically correspond to the axioms formulated by Bohlmann and
well-known intuitively derived laws of probahility:

e probabilities are numbers between () and 1.
e the certain event has probability 1.
e the addition law holds.

We are not going to look too closely here into the mathematical formu-
lation, because then it would be necessary to go into some details that while
important for the mathematics, are not so important for practical applica-
tions (see Note 1 at the end of the chapter). It remains to mention that
the axioms are so universal that they encompass all practical applications,
including, of course, the infinite event sets of “geometric probahilities.”

As was already proposed by Bohlmann, the statement of the multipli-
cation law for independent events achieves the status of a definition, in
that the equality corresponding to the multiplication law is used: thus two
events A and B are considered independent if the condition P(A N B) =
P(A) x P(B) is satisfied, where the intersection set P(A N B) corresponds
to the event that assumes the occurrence of both events A and B. Three




Games of Chance 49

or more events are considered independent if the corresponding product
formula holds for every choice of two or more events.%

In the Kolmogorov model, terms from probability theory such as event,
outcome, probability, and independence have acquired new interpretations
that apply exclusively to mathematical objects. Only these formal inter-
pretations are of interest within mathematical probability theory when, for
example, one is investigating entire classes of problems. Only when the
results obtained are to be applied do the plain, everyday meanings again
take center stage. Such a way of proceeding makes it possible to arrive at
universal and provable conclusions, and is thus extremely efficient. How-
ever, one should not underestimate the danger of losing sight of the theory’s
connection to applications.

In practice, in which it is important to explain and predict events,
one is happy to limit the scope of the mathematical formalism. Thus
the interpretations and arguments of the Laplacian model, despite their
inadequacy, again come into play. The knowledge that the model’s formal
deficits can be overcome provides peace of mind to those who require it.

Chapter Notes

1. To obtain a mathematical model that is both practical and maximally
flexible, two particular factors must be taken into consideration, though
they are of importance primarily only for infinite sets of outcomes:

e all events form a closed subsystem of subsets of the fundamental set
under the set operations. As set operations we include the intersection
of two sets and the union of countably many sets.

s the property corresponding to the addition law must hold for count-
ably many mutually disjoint sets.

It may happen that not all subsets can be thus obtained. But this is by
no means a drawback; in fact, it is rather the opposite. Namely, there are
subsets for which it makes no sense to associate a probability and that
therefore are better not viewed as events. Here is an example from the
domain of geometric probabilities.

If one chooses a random point within a sphere, then every set of points in
the sphere corresponds to an event. If all regions of the sphere are consid-
ered equally in the random selection, then the probability of an event is
equal to the proportion of the volume within the sphere. Congruent point

SFor example, for three independent events A, B,C the following equalities hold:
P(ANEBNC) =PAPEB)P(C), P(AN B) =P(A)P(B), P(BNC) = P(B)P(C), and
P(ANC)=P(A)P(C).
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sets that can be superposed on one another by translation and rotation
therefore possess equal probabilities. However, that some rather strange
sets can arise is demonstrated by the Banach—Tarski theorem, according to
which a sphere can be divided into finitely many pieces that—after trans-
lation and rotation—can be put together without any holes into a sphere of
double the diameter of the original sphere. Such a construction appears to
be impossible to normal human reasoning. Some insight can be obtained
from the explanation that the pieces are not connected regions, as one
may have thought. Rather, they are so complicated that they cannot be
visualized; by comparison, the sets of fractal geometry seem like equilat-
eral triangles. Although mathematics frequently describes conditions that
correspond to our experience, it does not always do so.

What is the volume, then, of the pieces produced by the sphere decon-
structed according to Banach—Tarski? Their sum must equal the volume
of the sphere, but also that of a sphere with eight times the volume! We
would do well to restrict ourselves at the outset to subsets that can actually
represent events.

Further Literature on the Axiomatization of
Probability Theory

[1] B.L. van der Waerden, Der Begriff der Wahrscheinlichkeit, Studium Generale

(2]
3]

(4]

4, 1951, pp. 65-68.

Ivo Schneider, Die Entwicklung der Wahrscheinlichkeitsrechnung von den
Anfidngen bis 1933, Darmstadt 1988, pp. 353-416.

Ulrich Krengel, Wahrscheinlichkeitstheorie, in: Ein Jahrhundert Mathematik,
1890-1990, Braunschweig 1990, pp. 457-489, especially Chapters 1 to 4.

Thomas Hochkirchen, Die Aziomatisierung der Wahrscheinlichkeitsrechnung
und ihre Konterte, Gottingen 1999.




In Quest of the Equiprobable

There is an American television show in which the contestant can win an
automebile by guessing which of three doors conceals the car. Behind the
other two doors, as a symbol of the loser, are a couple of goats. To spice
things up, after the contestant has selected a door, the quizmaster opens up
one of the two remaining doors, always one with a goat, since he knows
which door hides the car. Now the contestant has the option of switching
his choice from the door that he originally chose to the remaining third
door. Should he make the switch?

A great debate raged in the years 1990-1991 when this question was dis-
cussed in the pages of the magazine Skeptical Inquirer. It even crossed the
Atlantic, seeping into the letters columns of the German weeklies Die Zeit
and Der Spiegel.! And all because the opinion was offered in the magazine
that the contestant can increase his chances of winning by abandoning his
original choice. This seems a rather dubious assertion. It seems much more
plausible to argue as follows: the probability of winning the car begins at
1/3. But when the quizmaster opens one of the doors, then there are only
two possible outcomes, both equiprobable. Thus the probability for both
doors has increased from 1/3 to 1/2. And so the decision to switch doors
makes no sense.

! Der Spiegel 1991/34, pp. 212-213 and also (intentionally and unintentionally) amus-
ing letters to the editor in 1991/36, pp. 12-13; Spekirum der Wissenschaft 1991/11,
pp. 12-16; Gero von Randow, Das Ziegenproblem, Hamburg 1992, The problem it-
self is not new. It appeared in another formulation in Martin Gardner, Second Book
of Mathematical Puzzles and Diversions from “Scientific American,” New York 1961,
Chapter 19.
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On the other hand, supporters of switching doors argued that the prob-
ability for the door originally chosen has not changed: since the quizmaster
always opens one of the other two doors, and always one that has a goat
behind it, one obtains no additional information about the originally cho-
sen door. However, after that door has been opened, there are but two
doors remaining. Therefore, the probability of success for the third door
has increased to 2/3, and so the switch is to be recommended.

Surprisingly, the contestant’s decision is made intuitively easier when
the number of doors is larger. Let us assume that there are 100 doors with
99 goats and a single automobile, and the contestant has pointed at the
first door. Then it is clear that the chances of success are very small indeed,
since the probability of having chosen the correct door is—at least at the
outset—only 1/100. If the quizmaster now opens 98 of the remaining 99
doors, what might we suppose is behind the remaining door? That’s right!
It must be the car, unless the initial choice was correct, which is highly
unlikely. In the case of 100 doors, it is clear that one should alter one’s
original choice.

It should be clear, then, that the original version with three doors rep-
resents only a quantitative difference: to solve the original problem with
clarity, we need to identify the equiprobable outcomes. The question is
only what time and what state of knowledge are relevant for the symme-
tries in question. If the quizmaster was to open a door with a goat at the
outset, then there would be only two equiprobable outcomes. In reality,
however, the contestant first chooses one of the three doors, and only then
is one of the other two doors opened. This does not necessarily make the
remaining two doors equiprobable. The only thing that is certain is the ini-
tial situation, in which the automobile can be behind any one of the three
doors with equal probability. Therefore, the initial choice is correct with
probability 1/3 and incorrect with probability 2/3. After the quizmaster
has opened one of the doors, revealing a goat, it is clear what the effect of
switching doors would be:

| Original Choice | Probability | Change Mind?
First Case Correct 1/3 bad
Second Case | Incorrect 2/3 good

Since the contestant does not know whether the first or second case
obtains the automobile, he can only make a global decision to change or
not to change. The table shows clearly that the contestant should switch
doors, since that is twice as likely to improve the outcome as to worsen it.
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Another way of viewing the situation is this: suppose that the game is
played differently, so that after the contestant has chosen one of the three
doors, the quizmaster offers to let him change his choice to both of the two
remaining doors. That is, by switching his bet, the contestant will win if
the car is behind either one of the two remaining doors. At this point, when
no doors have been opened, it is clear that the probability of the car being
behind one of those two doors is 2/3. Since it is a certainty that there is
a goat behind at least one of those two doors, and the quizmaster knows
where the goats are hidden, no new information is provided by opening a
door with a goat behind it, and so makes no difference whether that door
is opened before or after the contestant decides whether to switch doors.
Therefore, from the point of view of probabilities, this variant is equivalent
to the original game.

There is an important principle of probability theory hiding behind
the problem of guessing the correct door: probabilities of events are not
necessarily absolute. They can be seen as depending on the occurrence of
other events. For example, the probability of rolling at least an 11 with
two dice is equal to 3/36. If the first die shows a 6, then 30 of the original
36 equiprobable outcomes are excluded. Among the six remaining possible
outcomes, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6, two of them, namely, 6-5, 6-6, lead to
success. Therefore, the probability of rolling at least 11 on the assumption
of the event that a 6 was rolled with the first die is equal to 2/6 = 1/3.

In general, one can proceed analogously within the confines of the Lapla-
cian model. We begin with two events, A and B. We then divide the num-
ber of outcomes that are favorable for both events A and B by the number
of outcomes favorable for the event B, and thereby obtain the conditional
probability of event A, on the assumption that event B has occurred. This
probability is denoted by P(A | B). Such probabilities can also be defined
outside of the Laplacian model, where instead of numbhers of favorable out-
comes, the quotient of the corresponding probabilities is taken:

P(AnN B)
P(B) -
For our example ahove, A corresponds to the event that at least 11 dots

will show up on the two dice, while B stands for the event that the first die
comes up with a 6. The equation can be expressed in full detail as follows:

P(A|B) =

P(sum is at least 11, assuming that the first die shows a 6)

P(sum is at least 11 and first die shows a 6)
P(first die shows a 6)
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For two independent events A and B, which by definition satisfy the
condition P(A N B) = P(A)P(B), the definition of conditional probability
vields the equality P(4 | B) = P(4), and analogously, P(B | A) = P(B).
The probabilities of the two events do not change when one considers each
event as conditional on the other.

It is often possible to calculate the probability of an event more simply
with the help of conditional probabilities. To do this, the event in ques-
tion must be viewed as the intersection of two or more events so that the
equality P(ANB) = P(A | B) x P(B), called the generalized multiplication
law, can be used. It is fairly clear how this approach operates when the
underlying random experiment breaks down into several steps, even if only
in imagination, as in the above example of the dice. For example, if two
cards are chosen at random from a deck of 52 cards, then

e the probability of the first card being an ace is 4/52, and

¢ the conditional probability of an additional ace is 3/51.

Therefore, the probability of drawing two aces is equal to 3/51 x 4/52 =
1/221.

The probability of drawing two aces is thus calculated by investigating
the “intermediate” result of drawing an ace with the first card. However,
this method does not always proceed so easily, for example, if the event of
interest can be achieved in a number of ways. Let us consider, for example,
the event that by drawing 2 of the 52 cards we get a “blackjack.”? A
blackjack consists of an ace together with a ten or one of the face cards
(jack, queen, king). We again proceed by considering events characterized
by the first card drawn. In contrast to the example of two aces, there are
now two completely different ways in which the drawing can proceed, since
a blackjack may arise from the first card being an ace, as well as from
the first card being a ten or face card. It is only after we separate these
two cases from each other that we will be able to use the multiplication
law. If we then add together the two probabilities associated with the two
ways of achieving a blackjack, we obtain the total probability of drawing a
blackjack:

2A blackjack is the highest combination in the like-named card game. Blackjack,
which is played in many casinos, is the subject of Chapter 17.
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First Card | Probability | Conditional Net Probability
Probability of a Blackjack
of a Blackjack
Ace 4/52 16/51 4/52 x 16/51 = 16,/663
10, J, Q, K | 16/52 4/51 16/52 x 4/51 = 16/663
2to9 32/52 0 32/52x0=0

In general, the principle that we have presented is described by the
formula for total probability: if the events By, Bs,...,B,, form a disjoint

decomposition of the certain event, then for an arbitrary event A, the
following equality holds:

P(A)=P(A| B,)xP(B1)+P(A | Ba) xP(Bz)+---+P(A| By,) xP(By).

And now back to our goat problem. Although we have actually solved it
already, we would like to solve it once more. For each of the two strategies,
we simply use the formula for the total probability.

Original choice is changed:

First Choice Was | Probability | Conditional Net Probability
Probability
of Winning
Correct 1/3 1 1/3
Incorrect 2/3 0 0
Total Probability of Winning (Sum) 1/3

Original choice is not changed:

First Choice Was | Probability | Conditional Net Probability
Probability
of Winning
Correct 1/3 0 0
Incorrect 2/3 1 2/3
Total Probability of Winning (Sum) 2/3

What is so complicated? How was it possible for even professionals to
be led so astray? There seem to be two reasons for this:

e in the case of three doors, the conditional probabilities are equal to
0 and 1. Such values keep us from having to deal with fractions, but
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on the other hand, they are scarcely seen as probabilities. Often, the
correct approach is not found at all. In the case of four or more doors,
the situation is simpler, since all the probabilities assume “genuine”
values.

e where are the outcomes that we can consider equiprobable on the
basis of symmetry? They are recognizable only at the outset, when
each door is equivalent to every other one. Every attempt to find
symmetries later becomes quickly entangled in pure speculation.

Is there no longer any doubt about the matter? What are we to make
of the following argument, put forth in Der Spiegel by an individual with
“Prof. Dr.” in front of his name??

‘When the quizmaster now opens an additional door and thereby
removes the second door from consideration, then according to
your calculation, the probability that the automobile is behind
the first door remains 1/3 (not 1!); that is, the probability that
the goats have meanwhile eaten the car is 2/3.

3 Der Spiegel 36, 1991, p. 12.
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Winning the Game:
Probability and Value

In the game of chance called chuek-a-luck, three dice are thrown. One may
bet on each of the siz symbols that adorn the faces of each die. One loses
if the symbol bet upon does not appear on any of the three dice. However,
if the symbol does appear, the player receives, in addition to his stake, the
amount bet for each of the dice displaying the symbol. (For example, if the
number bet on appears twice, the player receives three times the amount
wagered.) Does the bank have the advantage in this game? And if so, by
how much?

Chuck-a-luck, which also goes by the name crown and anchor,! is a game
that is relatively easy to analyze. However, the player's chances of winning
are frequently overestimated. The appearance of the six symbols on three
dice can lead to the deceptive conclusion that the probability of winning
is at least 1/2. And since one can win not only double one’s bet, but even
three or four times that amount, it would seem that the odds favor the
player over the bank.

1The only difference between the two games is the symbols shown on the dice. In
chuck-a-luck, normal dice are used, while in crown and anchor, the four playing-card
symbols club, diamond, heart, and spade are used, together with a crown and an anchor.
Iustrations and more information on the two games can be found in David Pritchard,
The Family Book of Games, London 1983, p. 174; Erwin Glonnegger, Das Spiele-Buch,
Munich 1988, p. 61; John Scarne, Complete Guide to Gambling, New York 1974, pp. 505~
507.
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Score Dice Combinations Number | Probability
4 6-6-6 1 1/216

3 6-6-a, 6-a-6, a-6-6, with a = 1,2,3,4,5 |15 15/216

2 6-a-b, a-6-b, a-b-6, with a,b =1,2,3,4,5 [ 75 75/216

0 a-b-¢ with a,b,c =1,2,3,4,5 125 125/216
Total 216 1

Table 10.1. Probabilities of winning in chuck-a-luck (betting on 8).

In calculating the chances of winning, it is crucial to consider not simply
the chances of winning versus losing, but the amount that is won as well.
Therefore, one cannot simply compute the chances of winning and losing
at chuck-a-luck. The mathematical model that we use must be extended
to allow us to make calculations of the value of a win in addition to the
probability of merely achieving such a win.

We begin by calculating the probabilities for the possible results of the
game. There are 216 possible combinations of dice to check. The results
are displayed in Table 10.1.

We now know the probabilities of attaining the different levels of win-
ning. But how do we use this information to calculate our winning outlook?
That is, we seek a measure for how our bankroll would fare over a large
number of games. To put it concretely, we seek a relationship that in a
long series of games would tell us how much we would expect to win on
average for a given amount wagered. We can calculate the average amount
won in a series of games if we know the relative frequencies of the various
levels of winning: each amount that can be won is multiplied by its relative
frequency, and then these products are added together. The sum is the
average amount worn.

As the number of rounds played increases, the law of large numbers
kicks in. This means that the relative frequencies of the individual scores
approach (with increasingly high probability) the associated probabilities.
Consequently, the average amount won approaches a number that can be
calculated by multiplying all the scores by their probabilities and summing
the products.

In this way, one discovers that the long-term prospects for winning at
chuck-a-luck are

1 15 75 125 199

— x4 ® 3 ® 2 ® (= — = 0.9213.
216 + 216 * 216 * 216 216 9213

Thus one expects to win about 8% less than the amount bet. In other
words, in the long run, one expects a net loss of about 8% of the total
amount wagered.
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In games of chance we are dealing with a number whose value is deter-
mined in a random experiment. Similar situations occur frequently:

e the number of squares in the game “Mensch drgere dich nicht” that
one is allowed to move. It is the direct result of a dice roll.

e the number of throws of the dice that a backgammon player requires
to roll out his counters in the endgame, the so-called running game.

e the damages that an insurance company must settle in a year.

e the number of citizens in a randomly chosen collection of one thou-
sand individuals who answer a polltaker's question a certain way.

e the number of radioactive decay processes observed during an exper-
iment.

e the amount won in a particular win class in the lottery.

A numerical value that is determined randomly is called a random vari-
able. In particular, a random variable consists of a random experment
and data on how the results of the experiment determine the values of the
random variable. Thus in the context of a random experiment, a random
variable is associated with an order relation that assigns a number to each
result of the experiment. Of course, completely different random variables
can be defined for a random experiment.

Although a random variable is described by its relation to a random
experiment, it is often of little interest to know concretely what this relation
looks like. What is of greater interest is the probabilities with which the
individual values are obtained. For a win in chuck-a-luck, we have already
determined the probabilities: the probability of the win value 4 is 1/216,
for the value 3 it is 15/216, for the value 2 it is 75/216, and finally, for the
value (), the probability is 125/216. If the random variable is denoted by X,
then one can write the probability distribution compactly in the following
form (see Note 1 at the end of the chapter):

pr -0~ 12
P(X =2)= 2—%’
P(X =3) = 21156’
P(X = 4) = —

216°
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For chuck-a-luck, we calculated the odds directly from the various scores
and their associated probabilities. In particular, each amount that could be
won was multiplied by its probability, and then the products were summed.
The formula makes sense because of the law of large numbers, since in long
series of games, the average amount won approaches the number that was
calculated arbitrarily closely (with ever increasing probability).

Needless to say, the underlying principle is not restricted to the game of
chuck-a-luck. Thus for a random variable X that can assume only values
from the finite set zy,xz3,...,2,, we define the expectation, abbreviated
E(X) and read “E of X,” by the formula (see Note 2 at the end of the
chapter)

EP)=PX=z))xa1+P(X =z9) xza+ -+ P(X = z,,) X 2.

We have already determined that the expectation in chuck-a-luck is
199/216. For the number thrown on a die, we have the expectation
1><1+1><2+1><’i+1 ><4+1><’+1 xf‘—21—’i
6 6 6 °"6 67776 " "6
Since all six outcomes are equiprobable, this expectation is equal to the
average of the six numbers on the die, which are the six possible outcomes.
For the sum on two dice, one obtains the expectation
1 2 4 3 2 1

® 2+ * 3+ wd 4 * 10 + ®x 11 +
36 36 36 36 36 36

There is a particular category of expectations that we should emphasize:

w

x12=T.

if a random variable assumes only the values 0 and 1, then the expectation
is equal to the probability that the random variable assumes the value
1. Thus expectation can be viewed as a generalization of the notion of
probability.

Intuitively, it is clear that the expectation characterizes the relative
weights of the values of random variable, and it does so with a single num-
ber. The value of the expectation is influenced by all the values that the
random variable can assume, where values with higher probability should
have a stronger influence than those whose probability is small. Just as for
probabilities, there is also a law of large numbers for random variables: if
the experiment underlying a random variable is repeated in a series of tri-
als, and if the results of the individual experiments are independent of one
another, then the average value of the random variable approaches the ex-
pectation arbitrarily closely, ignoring exceptional values whose probability
of occurring becomes arbitrarily small. Thus in the analysis of a game, the
concept of the expected winnings, or simply expectation, assumes central
importance:
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e the odds of a game are fair if the amount wagered is equal to the
expectation.

e if a game admits a choice of strategies, then the player should behave
so as to maximize the expected winnings. In the long run, such a
strategy leads to maximal success.

In order to calculate expectations and to interpret the quantitative re-
sults, there is a rather broad palette of techniques and general laws that
we should introduce, at least superficially. We are interested primarily in
how to compute expectations. As an example, let us take the expectations
that arise from two successive games of chuck-a-luck:

e X1, X5, ..., X denote the amounts won if in the first round, a simple
bet of one, two, ..., respectively, six is placed.

e V1. Y5 ... Y denote the amount won if in the second round a simple
bet of one, two, ..., respectively, six is placed.

All 12 random variables possess equal probability distributions; their
expectations are equal to 199/216. What is important is that the relations
between the random variables are quite different: thus it is impossible that
X, and X§g simultaneously hold the maximal value of 4, since the required
dice throws 1-1-1 and 6-6-6 are mutually exclusive. On the other hand, it
can easily happen that one wins maximally in each of the two trials. This
means, for example, that X and Y} can simultaneously have the value 4.
The events in which these two random variables take on particular values
are always independent of one another; one speaks of independent random
variables.

We can now caleculate with random variables that relate to the same
random experiment. With respect to the random experiment of two chuck-
a-luck throws, expressions like

2Xs, Xe-1, Xi+Xs., Xo+VYs, Xe¥s.

are not only mathematically reasonable,? but they also have practical ap-
plication. Thus

e 2X; is the amount won by betting twice a unit amount on 6 for the
first round.

e X — 1 is the possibly negative net profit when the amount bet is
subtracted from the amount won (on a simple bet on the 6 in the
first round).

2Mathematically, these expressions represent the addition, multiplication, etc., of
maps that share a common domain of definition.
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o X 4 Xj is the amount won by betting on both 1 and 6 in the first
round.

e X + Yy is the amount won if 6 is bet on in both rounds.

e XiY5 is the amount won if 6 is bet on in the first round, and the
winnings from that round are bet on 6 in the second round.

What are the expectations for these five random variables? One can
always calculate the probability distributions combinatorially, but that is
much too complicated. A better approach is to relate the expectations to
the underlying random variables. And indeed, that is possible. We have

E(2X¢) = 2E(Xs) = 1.843,

E(Xg 1) = E(Xﬁ) — 1= -0.079,
E(X: + Xe) = E(X1) + E(X¢) = 1.843,
E(Xe + Ys) = E(Xg) + E(Ys) = 1.843,

E(XeYs) = E(Xg) x E(Y;) = 0.849.

Most of the properties that we have used are not particularly surprising,
for it was to be expected that doubling the wager doubles the amount won,
and so on. Of particular interest is the last equality, which is an application
of the multiplication law for independent random variables. In the case that
we are considering, the result is plausible: on the first throw, we expect on
average to win E(Xg). Then in the second round, we bet that amount, and
expect to win E(Y;) times the amount wagered. Since the two events are
independent, we expect on average for the two rounds to win E(Xg) x E(Yg).

To summarize, for random variables X and Y and constants a, b, the
following equalities hold:

E(aX +b) = aB(X) + b,
E(X +Y) = E(X) + E(Y).

If the random variables X and Y are independent, then the multiplica-
tion law
E(XY) = E(X) x E(Y)

holds as well.

The random variables 2Xq, X; + Xg, and Xg + ¥ all have the same
expectation, but not the same probability distribution. In terms of the
game itself, this difference manifests itself in that the three different betting
strategies represent different levels of risk tolerance (see also Table 10.2):
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e with 2Xg one is taking a great risk on a single number with a doubled
bet. With probability 125/216 = 0.569 one will win nothing, though
one has the possibility of a return of eight times the amount wagered.

e with X; + X one is playing cautiously, since bets are placed on two
different numbers. Only for 64 of the 216 possible outcomes, that is,
with probability 0.296, is nothing won. However, the most that one
can win is five times the unit wager, which occurs when on the first
throw either two 1s and a 6 or a single 1 and two 6s appear.

e the random variable Xg 4 Y5 represents a strategy whose risk toler-
ance is somewhere between those of the other two strategies. The
probability of winning nothing is 0.335, and one can win up to eight
times the amount wagered, though this is likely to happen with con-
siderably less frequency than with the first strategy.

Qualitatively, these three random variables are distinguished by their
degree of scattering, or deviation, that is, the degree and and probability
of the deviation of the values of the random variable from the expectation.
Mathematically, the deviation of the random variable X is described by
the transformed random variable |X — E(X)|. It contains precisely the
information as to what absolute differences from the expected value are
possible and with what probabilities they occur. For example, if X is the
result of the throw of a die, then |X —E(X)| = | X —3.5| is a random variable
that takes on each of the values 1/2,3/2,5/2 with probability 1/3. A
possible measure of deviation is represented by the average deviation, which

in our example is equal to 3/2 and in general is equal to the expectation
E(]X — E(X)|). The fact that one generally measures the deviation of a
random variable with the standard deviation

ox = VE((X - E(X))?)

is due exclusively to the fact that absolute values are inconvenient to deal
with mathematically. The expression under the square root sign is called
the variance and denoted by Var(X). An explicit formula for the variance—
and thus for the standard deviation—can be easily derived for random
variables X that take on only the finitely many values zy,xa,...,2,. If
m = E(X) is the expectation, then the variance is equal to

Var(X) = P(X = o) (z, — m)2 + P(X = z3)(z2 — m)2 4.
+P(X = zp) (2 — 7n)2_
The odds of winning as described for the three different random wvari-

ables differ considerably in their deviations from their common expectation,
as shown in Table 10.2.
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t P(2Xg = t) P(X]_ + X¢g = f.) P(Xﬁ +Ys = t)
0 0.57870 0.29630 0.33490
1

2 0.44444 0.40188
3 0.11111 0.08038
4 0.34722 0.12037 0.12592
5} 0.02778 0.04823
6 0.06944 0.00804
7 0.00064
8 0.00463 0.00002
E(X) 1.842593 1.842593 1.842593
Var(X) 4.956704 2.003001 2.478352
ox 2.226366 1.415274 1.574278

Table 10.2. Different ways of placing two bets in chuck-a-luck.

Here are some important rules for the variance and standard deviation:
if X is a random variable, and a, b constants with a > 0, then

TaX+b = Q@ X TX.

For independent random variables X and Y, one has the relation®

Txiy = 1;‘0'%{ +U§/

The standard deviations for the random variables 2Xg and Xg + Y
could also have been calculated from the standard deviation of Xj.

In order not to lose our overview of these matters in the thicket of
the many formulas that have been unavoidable in this latter part of the
chapter, let us sum things up: when values are determined in a random
experiment, they can be described mathematically by random variables.
In particular, a random variable can be used to describe the winnings in

3This equation is based on the multiplication law for random variables. The proof is
a good exercise in calculating with random wariables: we first observe that the variance
formula can be easily reformulated, yielding the variance of a random variable X in the
form

Var(X) =E ((X —E(X))?) =E (X? - 2E(X)X + E(X)?)
=E(X?) - 2E(X)? + E(X)? =E (X?) - E(X)?.
Then for independent random wvariables X and Y, we obtain
Var(X + Y) =E ((X + Y)?) —BE(X 4+ Y)? = E (X 4 2XY + Y?) — (B(X) + E(Y))?
= Var(X) + Var(Y) + 2E(XY) — 2E(X) x E(Y) = Var(X) + Var(Y),

from which follows the corresponding formula for the standard deviation.
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a game of chance. Since random variables are difficult to calculate with
all their variety, their fundamental properties are described with the aid of
two characteristic values:

e the expectation is a sort of average, whose value appears in practice
when an experiment that determines the random variable is repeated
in a large number of independent trials. Then according to the law
of large numbers, the average value of the random variable measured
approaches, eventually, and with increasing probability, the value of
the expectation. In particular, a game of chance offers fair odds if
the amount that one expects to win on average is equal to the amount
wagered, that is, if one expects to “break even” in the long run.

e the standard deviation is a measure of how frequently and with how
great a deviation the values of a random variable deviate from its
expected value.

Frequently, it happens that only these two values, the expectation and
standard deviation, are known about a random variable. Such can be the
case, for example, when the random variable is derived from other random
variables by arithmetic operations and the expectation and standard devia-
tion can be determined directly from those of the original random variables.
We shall see later that in such situations, a knowledge of these two values
suffices to make adequate statements about the random variable itself.

Chapter Notes

1. Since a random variable X associates a number with every result, mathe-
matically speaking, we are dealing with a mapping from the set of results
into the real numbers. For the probability P(X = 0), the expression X =0
is the abbreviation for the event { w | X(w) = 0}, which contains those 125
of the 216 dice outcomes in which the player wins nothing.

From a purely mathematical point of view, there are almost no restric-
tions on how a random variable can associate numbers with the outcomes.
It must only be ensured that every set that is a preimage of the form
{w| X(w) <t} corresponds to a probability. This is always achievable
with finite sets of outcomes.

2. If a random variable can assume infinitely many values, then the expec-
tation becomes an infinite series, or in the case of continnous values, an
integral. For example, the number V' of rolls of a die that one needs before
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a 6 comes up has expectation

E(V)=P(V=1)4+2xP(V=2)
+3xP(V=3)+4xP(V=4)4-.-

1 5 25 125
=1lx=42x =43 — 44K — 4
ﬁ+ 36 216 1296+

The sum of this series is 6. That is, the number of rolls that one expects
to take on average until a 6 is rolled is six, a quite plausible value.

The following game, known as the Petersburg paradox, does not have a
finite expectation: a coin is tossed until “tails” appears. If this occurs on
the first toss, then the player wins the value 1. If tails first occurs on the
second toss, then the value is 2. For the third toss, it is 4, then & for the
fourth toss, and so on. The expectation is therefore

1 1 1 1
I1X o+ 2X=+4 X +8X =+,
2 * 4 + 8 + 16 +
But the series does not converge; the expectation is infinitely large. A
practical interpretation of this state of affairs is there is no amount large

enough to be a reasonable wager in this game.




Which Die Is Best!?

Two players, Jack and Jill, are playing a game of dice in which each player
rolls a die, and whoever rolls the highest number wins. There are three dice
available, all of them different from the standard model in that the first
die has faces with the numbers 5,6,7,8,10,18; the second has the numbers
2.8,4,15,16,17; and the third has 1,6,11,12,13,14. The players each choose
one of the three dice, taking turns choosing first. It is Jack’s turn to choose

Jirst. Which die should he take?

The three dice represent three random variables whose values can be com-
pared. In the case of everyday numbers, among any three of them there is
always one that is not exceeded by any of the others. Does that hold for
random variables as well? Which of the three dice produces the “largest”
random variable?

Let us start out by comparing the first two dice with each other. If we
look at all 36 equiprobable combinations, as listed in Table 11.1, we see
that in 21 of the 36 cases, the value of the first die is greater than that of
the second. Thus the probability of winning is 21/36 for the player who
chooses the first of these two dice in playing against the second.

Table 11.2 shows that the third die is even worse than the second. In
competition with the third die, the second wins with probability 21/36.

That would appear to settle the matter. The first die is better than the
second, and the second is better than the third. Jack should choose the first
die. But what if Jill then chooses the third die? Against all expectation,
the first die is not at an advantage. In fact, it loses with probability 21 /36,
as can be seen in Table 11.3.
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I . Which Die Is Best!?

Die I
5 7 8 9 10 18
DielIl] 2 |I I I I I I
3 /]I 1 I I I 1
4 /I I I I I 1
I5 (I IT II II II I
16 |II IT II II II I
I7|II IT II II II I
Table I1.1. Die | versus Die Il: which one shows the larger number?
Die II
2 3 4 15 16 17
Dielll]l 1T (II II II II II 1II
6 |III III IIIr II II 1II
11 (I 1 1mr I I 1I
12 (III III I I I 1I
I3 (I IIIT 111 I I 1I
14 (III IIT III II II 1II

Table 11.2. Die ll versus

Die lll: which one shows the larger number?

Die III
1 6 11 12 13 14
DieI 5 |I 1III III III IIT III
7T |11 IImT 11 Il III
8 | I 1 IIm 111 I 11
9 | I 1 IIm 111 11 11
101 1 I 111 11 11
1811 1 I I I I

Table 11.3. Die lll versus Die |: which one shows the larger number?
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It turns out that Jack is at a great disadvantage in having the dubious
privilege of choosing the first die. No one die is the best, since each of them
has a die that is better: the first die is better than the second; the second
is better than the third; and the third is better than the first. What
at first glance seems to defy the laws of reason can be expressed quite
clearly in the language of mathematics: the relation “better than” between
two random variables is not transitive. That is, the familiar transitive
property of numbers, that from o > b and b > ¢ it always follows that
a > ¢, is not satisfied for random variables. We note that the relation
“better than” is indeed suitably defined for the game under consideration:
a random variable X is considered to be better than a random variable YV
fPX >Y)>1/2

One might now ask whether the advantage to the second player increases
if dice with different numbers are used. Let us formulate the question in
greater generality. We seek independent random variables X, Xo, ..., X,
for which the minimum of the probabilities P(X; > X5), P(X2 > X5), ...,
pr(X, > X,) is as large as possible. For the case n = 3 random variables
the maximum turns out to be 0.618, where the random variables satisfying
that condition cannot be achieved with suitably numbered dice. Moreover,
it is clear that the value 21/36 = 0.583 determined for the game that we
have been considering cannot be much improved. In contrast, for the case
n = 4 independent random variables, the theoretical maximum 2/3 can
actually be achieved with real dice:!

Die I: 3 4 5 20 21 22
Die II: 1 2 16 17 18 19;
Die III: 10 11 12 13 14 15;
Die IV: 6 7 8 9 23 24

1 The set of four dice is taken from Martin Gardner's Wheels, Life, and Other Mathe-
matical Amusements, New York, 1983, Chapter 5. The labeling of the three sets is from
G. J. Székely, Paradoza, Frankfurt 1990, pp. 651f.
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A Die Is Tested

A die whose symmetry is to be tested is rolled ten thousand times. The
sum of the numbers thrown in 37241, which corresponds to an average of
3.7241. Is such a deviation from the ideal value of 3.5 possible if the die
1s fair? Or can the result be explained only by the assertion that the die is
asymmetric?

Such questions are typical in the practice of applied statistics. Does the
result of a series of trials lie within the range of what can be expected from
random variations? Or can the assumptions held at the outset no longer
be maintained? Must we conclude that the die thought to be symmetric is
in fact asymmetric, the medicine thought to be worthless in fact effective,
the politician whose popularity has been at a steady level now no longer so
popular. Therefore, we might rephrase our original question more precisely
thus: how likely is such a deviation from the ideal value of 3.5 if the die
is fair? Can the result be much better explained by the assertion that the
die is asymmetric?

Such problems are frequently investigated by starting with an assump-
tion, generally called a hypothesis, and then deriving assertions about the
possible behavior of the results of a series of trials to be made. Generally,
such statements deal with a range within which a test value, also called a
statistic, must lie with a certain high degree of probability. Thus in the
series of dice throws, one determines limits within which the sum of the
numbers obtained must almost certainly lie, say, with a probability of 0.99.
If then in the trial series the sum falls below or exceeds this value by a
large amount, the die is declared asymmetric. This decision is justified in
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large measure because it is entirely plausible that an otherwise very im-
probable deviation can indeed be caused by an asymmetry. On the other
hand, with a less sensible plan of experiment, the occurrence of an a priori
improbable result could not necessarily be taken as an indication that the
hypothesis should be rejected. For example, in 10000 throws of a die, it
is highly improbable to obtain ezactly the sum 35000. But since there is
no asymmetry that could plausibly cause such a result, it would not make
much sense to conclude from this that an asymmetry existed.

But one can arrive at a false conclusion even with the “outrider” crite-
rion:

e even if a die is absolutely symmetrie, there is still a finite probability,
0.01 in our example, that it will be declared asymmetric.

e conversely, there may be no evidence adduced against the die. That
is, an asymmetric die does not necessarily lead to conspicuous de-
viant behavior. In particular, if the die is only slightly asymmetric,
one cannot realistically expect anything much different from normal
behavior.! Furthermore, a test that considers only the average value
of a die is not able to detect every sort of asymmetry.

Although mathematical statistics employing probability-theoretic test
methods has existed only since about 1890, isolated examples of hypothesis
testing can be found much earlier. Thus, for example, in 1710, the Eng-
lish mathematician John Arbuthnot (1667-1735) disproved the hypothesis
that male and female human hirths are equiprobable. In the birth statis-
tics available to him, in each of the 82 years, the number of males was
greater than that of females. If the events were in principle equiprobable,
the probability of such a result occwrring by chance would be (1 /2)82, an
unusually convincing refutation of the hypothesis.?

With our die, the situation is not so simple. Nevertheless, it is plausible
in considering how to evaluate the results of our experiment to ask whether
they violate the law of large numbers. Does the average value in 10000
throws of a fair die have to lie closer to the expected value 3.5 than the

1In other cases, one takes the fact that the results of the experiment do not contradict
the hypothesis as suflicient cause to declare the hypothesis satisfied. If the hypothesis
is actually false, then one speaks of having made a type 2 error, in contrast to a type 1
error, in which a valid hypothesis is in fact rejected. A significant portion of the subject
of mathematical statistics is devoted to questions such as how likely type 1 and type 2
errors are to occur and how tests can be designed to avoid them to the greatest possible
extent.

2 Arbuthnot’s investigations are discussed at greater length, in addition to early meth-
ods in statistics by other scholars, in Robert Ineichen, Aus der Vorgeschichte der Math-
ematischen Statistik, Elemente der Mathematik 47, 1992, pp. 93-107.
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observed value of 3.72417 Since we have thus far discussed the law of
large numbers only qualitatively, we need to come up with a quantitative
formulation. In this, the rules for calculating expectation and standard
deviation will be most useful.

For the sake of generality, let us not limit ourselves to the special case
of dice throws, but instead, investigate an arbitrary sequence of identically
distributed and independent random variables Y = ¥7,¥5, ..., Y,,. For the
total of the numbers from n throws of a die, which is the random variable
Y1+ Ya+ .-+ Yy, we first obtain

EY1+Ys+ -+ Y,) =nE®Y),

OY | 4+Yo+--+Y, = V AIYG'Y-

The average throw, which is given by the random variable

X

Vit Yot Ya
n ’

is thus characterized by the values

E(X) = E(Y),
ay

Ty = \/H

That is, the random variable X, which represents the average value of the
n random variables, possesses the same expectation as the original random
variable Y. On the other hand, the standard deviation is less than that
of the original value by a factor of \/n. Therefore, with an unchanged
expectation, the deviation becomes smaller in the course of the series of
throws. But that is precisely the statement of the law of large numbers!
Note that the deviation from the average value of the random variable
becomes less, but not the deviation from the sum, whose standard deviation
actually becomes greater, namely, by a factor of v/n for n throws. There is
no law of equalization that levels out the results in the sum Y7+ Y5+ - -4V,
but only a law of large numbers that pushes average values in the direction
of the expectation.

We know, then, that with sufficiently many trials, the measured average
value exhibits a reduced standard deviation. But what can we say about
the probabilities of the observed average values; that is, what numbers,
and with what probabilities, can be attained by the experimentally deter-
mined average value? A very coarse bound on how the random variable
X can be distributed is given by Chebyshev’s inequality (Pafnuty L'vovich
Chebyshev, 1821-1894): the probability that an arbitrary random variable
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deviates from its expectation by at least { times its standard deviation
is at most 1/t2. Thus large deviations are relatively improbable, where
statements that can be made are of interest only when the value of ¢ is
greater than 1. For example, for ¢ = 1.5, Chebyshev’s inequality tells us
that the probability of a deviation of at least one and one-half times the
standard deviation from the expectation is at most 1/1.5% = 0.444. For
t = 10, a deviation of more than ten times the standard deviation occurs
with probability at most 0.01.

Let us see what that last statement means for our series of dice throws.
For one throw, we have an expectation of 3.5 and a standard deviation of
1.708. For 10000 throws, we obtain for the average value of the random
variable X the standard deviation oy = 0.01708. According to Cheby-
shev's inequality, for 10000 throws, the average of the numbers thrown
should lie outside the interval 3.5 + 10ox with probability at most 0.01.
And it is precisely this unlikely event that has occurred in our series of trials
with the result 3.7241. If we are looking for a fair die, then this one should
not be used, since we are forced to reject the hypothesis of symmetry.

Now that we have seen how useful Chebyshev’s inequality can be, we
would like to delve into its consequences a bit more deeply. In mathematical
formulation, for a random variable X, we have

1
P(IX — E(X)| > tox) < .

If we read this inequality symbol by symbol, we have the following in-
terpretation: the event that the random variable X deviates “significantly”
from its expected value E(X), namely, |[X — E(X)| > tox, can occur with
probability at most 1/t2 (see Note 1 at the end of the chapter). That is,
“significant” deviations cannot appear too “frequently.”

The most important application of Chebyshev’s inequality is the law
of large numbers. If a random variable X assumes values from a series of
independent trials as described above, then Chebyshev’s inequality takes
the form

ay 1

P (|X - E(X)| = tﬁ) < =.

The effect of the law of large numbers is vividly recognizable in this in-

equality when the parameter f is gradually increased in the course of the

series of trials. The tolerance interval and associated probability become

smaller simultaneously, as shown, for example, for the dice experiment in
Table 12.1.7

3For the examples in the table, the value t = §/n was chosen.
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Trials | Tolerance Interval Probability That the
Average Roll Is Outside
From | To

10 | 2.7073 | 4.2927 < (0.4642
100 | 3.1321 | 3.8679 < (0.2154
1000 | 3.3292 | 3.6708 < 0.1000
10000 | 3.4207 | 3.5793 < (0.0464
100000 | 3.4632 | 3.5368 < 0.0215
1000000 | 3.4829 | 3.5171 < 0.0100
10000000 | 3.4921 | 3.5079 < 0.0046

Table 12.1. The course of average values of a die in a series of dice throws.

We note finally that the estimates of the probabilities are very gen-
erous. That is, the probability is generally much smaller than the upper
bound provided by Chebyshev’s inequality. A much more precise state-
ment about such probabilities is made by the central limit theorem, which
will be discussed in the next chapter. However, the formulas of the central
limit theorem are significantly more complex, for which reason Chebyshev’s
inequality retains its significance: that the law of large numbers can be de-
rived in a relatively elementary manner from the axioms of probability
theory.

The classical law of large numbers, as we have remarked repeatedly in
the first chapters of this book, applies only to probabilities and relative
frequencies. Of course, this special case can also be made quantitatively
more precise with Chebyshev's inequality: from a random experiment and
event A with probability p = P(A), a random variable is constructed that
has the value 1 when the event occurs, and is otherwise equal to 0. If the
experiment is now repeated n times in a series of independent trials, one
obtains uniformly distributed independent random wariables ¥7,Y5, ..., Y.
They satisfy the following equalities:

P(Y;=1)=p,
P(}ﬁ =0) = ]_—p._,

and therefore,
E(Y:) =p
and

Var(V;) = (1-p)p* + p(1 —p)* =p(l - p) < i.
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Trials | Tolerance | Probability That the
Interval Relative Frequency

Is Outside
10 | p£0.2321 < 0.4642
100 | p£0.1077 < 0.2154
1000 | p£0.0500 < 0.1000
10000 | p£0.0232 < 0.0464
100000 | p£0.0108 < 0.0215
1000000 | p=£0.0050 < 0.0100
10000000 | p£0.0023 < 0.0046

Table 12.2. The empirical measurement of an unknown probability p.

The average X of these random variables Y7, Y5, ..., Y, is now nothing
but the relative frequency of the event A in these n trials. Chebyshev’s
inequality now has something to say about the probability of deviations of
this relative frequency X from the probability p, namely,

t 1
Pl|X —pl = < .
(' p|—2\/:71)—2

If we again let the deviation determined by the parameter ¢ gradually
increase along with the number of trials, the consequences of the inequality
can be seen in the results displayed in Table 12.2.*

In comparison with the version of the law of large numbers formulated
in Chapter 5, the version formulated here is significantly weaker. It is
therefore known as the weak law of large numbers. The difference is that
here, the probability always refers only to the deviation in a particular
number of trials. In contrast, the strong law of large numbers, as described
in Chapter 5, also makes assertions about the deviations in the further
course of the series of experiments.

The formal derivation of the law of large numbers gives probability
theory an important confirmation. The empirical discovery that relative
frequencies in series of trials approach a limit over time was the origi-
nal motivation for introducing an abstract number: the probability of an
event. At the same time, one obtains a method of measuring this num-
ber and information about how precise this method is. Thus the transi-
tion from uncertainty to near certainty in long series of trials has become
quantifiable.

4We have again used t = /n.
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Chapter Notes

1. From a mathematical point of view, Chebyshev’s inequality is relatively

elementary. For example, if a random variable X can assume only the
finite values =, zs, ..., T,, then every value x; that deviates by at least u
from the expectation, that is, that satisfies the inequality |z; — E(X)| = u,
results in a summand

P(X = z:)(z: — B(X))? = P(X = z;)u”
in the variance formula, so that the variance attains at least the value
P(IX — E(X)| > w)u”
from these “outliers” alone. By algebraic manipulation, the inequality
becomes

Var(X)

H
u?

P(|X —E(X)[ 2 u) =

which for u = toy vields the desired version of Chebyshev’s inequality.
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The Normal Distribution:
A Race to the Finish!

In a racing game whose goal is to be first to move a counter across the goal
line, player Jill has 76 squares to traverse. On each move, she is permitted
to move her counter a number of squares equal to the result of throwing a
pair of dice. What is the probability of Jill's reaching the goal in fewer than
ten moves?

Such racing games with dice have a long tradition, and they exist in great
variety. Among the games in which the players do not try to block one
another (in contrast to backgammon and pachisi) can be found in such
classics as the game of goose and that of snakes and ladders. A modern
variant is the very successful game Railway Rivals, invented in 1970 by the
Englishman Dave Watts.?

It is frequently of great importance in this game to determine proba-
bilities for particular routes, namely, when one must decide whether one

1In this game, played on a honeycomb-patterned board showing a simplified map
with bodies of water, mountains, and cities, stretches of railway track are laid and then
traveled. In each round, two towns are selected with a dice roll as starting and ending
locations. Each player who wants to travel must decide on a route where only one’s own
track can be traversed free of charge; one is charged a tariff to ride on an opponent’s
track. After a player has decided on a route, the actual race begins, where moves are
governed by the roll of the dice. The first two players to reach the goal get points. More
information on the game can be found in Erwin Glonnegger, Das Spiele- Buch, Munich
1988, p. 75; Jury “Spiel des Jahres,” Spiel des Jahres, Munich 1988, pp. 62f.
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should pay a tariff to be able to take a shorter route. For more on this
problem, see “Assymetric Roulette.”

In principle, the problem stated at the beginning of the chapter can be
solved along the same lines as the division problem introduced in Chapter 4:
for longer and longer routes, the probabilities are determined for traversing
them via various rolls of the dice. Here we shall fall back on the results
that we obtained earlier. Let ¥7,Y5,... be the numbers rolled with the
dice. Then the desired probability of obtaining the sum 76 is given by
P(Yy + --- + Yy > 76), which can be calculated with the formula

mn+m+nzmzémn+m+ngm

2
+EP(Y1+---+Y3273)

+3
12

P(Yy+ -+ Ys = 72)

1
+EP(Y1+---+Y3264},

on the assumption that we know the probabilities on the right-hand side
of the equation.? Every situation is thus conditioned on the possible re-
sults of the dice roll just analyzed. Step by step, one thus obtains the
desired probability 0.042138. One requires either a computer® or sufficient
patience, since several hundred intermediate values have to be calculated.
It would therefore be desirable to have a simpler way of computing an ap-
proximate result. Indeed, that is possible, and it is done with the help of
the central limit theorem. This theorem makes assertions regarding inde-
pendent and identically distributed random variables ¥ = Y1, Y5,...,Y,, as
they appear in series of trials: assertions about the sum Y; +Y5+---+Y,, for

2This formula is an application of the formula for total probability (see Chapter 9).
The event ¥1 + -+ + Yy > 76 is investigated conditioned on the possible results Yo of
the ninth throw of the dice. Here we have

P(Yi+- +Yy>76|Yo=k) =P(Yi + -+ Yz > 76 — k).

3Using a spreadsheet calculation is simpler than the obvious method of writing a
program in a programming language such as Pascal, C, Basic, or Fortran. A table is
made of the probabilities of achieving the goal for the squares yet to be traversed, from
76 down to —10 (allowing for the possibility that the goal is exceeded by 10 squares) and
the remaining number of rolls from 0 to 9. Aside from the initial values () and 1, which
correspond to the probabilities at the end of the game, only a single formula needs to
be entered. The balance can be taken care of with table calculations such as “fill down”
and “fill right.”
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n sufficiently large. It is known that the sum has expectation nE(Y) and
standard deviation y/noy. What the random variable looks like exactly is
seen from the probabilities

P(Yi+Yat -+ Y, <u).

But how do these probabilities behave as the parameter u is varied? The
central limit theorem asserts that for a sufficient number of trials, a good
approximation can be calculated from the quotient

u — nE(Y)
Vnoy

Of importance is how far the parameter u is from the expectation nE(Y'),
where this distance is measured relative to the standard deviation \/noy.
The actual statement about the limiting value can best be understood by
choosing a fixed value of ¢: if one fits, for fixed ¢ and increasing number of
trials, the value of the parameter u continuously to the number of trials n
according to the formula

t =

u = un(t) = nE(Y) + ty/noy,

then the probability P(Y; + Y2 +--- +Y, < u) approaches a number that is
independent of the original random variable Y. That is, the limiting value
of the named probabilities is always the same, regardless of which random
variable you start with. There are differences only for various values of the
parameter ¢, so that the limiting values, which are generally denoted by
¢(t), can be tabulated. To provide an overview, let us content ourselves
here with a small selection of values of ¢ (see Table 13.1). More complete
data can be found in any book of mathematical tables under the heading
“normal distribution.”

The tabulated numbers ¢(t) describe in their entirety a special random
variable, which can take arbitrary values in the set of real numbers. Here
¢(t) is the probability that this random variable is less than or equal to .
The random variable called the standardized normal distribution has ex-
pectation 0 and standard deviation 1 (see Note 1 at the end of the chapter).

The central limit theorem is applied in practice to approximate prob-
abilities of the form P(Y; + ¥, + --- + Y, < u,(t)) with the associated
probabilities ¢(t) of the normal distribution. The error involved becomes
smaller for larger values of the number of trials n.

In our example of a series of dice rolls, the approximation already re-
turns good results for small numbers of trials such as n = 9: starting with
the characteristic data of the random variable ¥, namely, E(Y) = 7 and
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t o=t | o
0.0 | 0.50000 | 0.50000
0.2 | 0.42074 | 0.57926
0.4 | 0.34458 | 0.655H42
0.6 | 0.27425 | 0.72575
0.8 | 0.21186 | 0.78814
1.0 | 0.15866 | 0.84134
1.2 ] 0.11507 | 0.88493
1.4 | 0.08076 | 0.91924
1.6 | 0.05480 | 0.94520
1.8 | 0.03593 | 0.96407
2.0 1 0.02275 | 0.97725
2.2 1 0.01390 | 0.98610
2.4 1 0.00820 | 0.99180
2.6 | 0.00466 | 0.99534
2.8 | 0.00256 | 0.99744
3.0 |1 0.00135 | 0.99865

Table 13.1. Values of the normal distribution.

gy = 2.4152, one has to choose the parameter ¢ such that the equation
ur(t) = 9% 7+t x 3 x 24152 = 75.5 is satisfied, which is the case for
t = 1.7232. The reason for choosing the number 75.5 instead of 76 is that
the sum of the dice can assume only integer values, while the normal dis-
tribution extends over the whole real line. The values between 75 and 76 of
the normally distributed random variable are divided approximately evenly
between the two neighboring dice sums. We thus obtain the result

P(Y, + Yy + --- + Yy < 75) &~ ¢(1.7252) = 0.9578.

The desired probability P(Y;+Ya+- - -+Yy > 76) is therefore approximately
0.0422, which is a good approximation to the exact value 0.042138.

There are many applications of the central limit theorem and the normal
distribution. To give an impression of their scope, we look back at some of
the topics discussed in previous chapters:

e with the central limit theorem, the law of large numbers can be im-
proved over what is attainable with Chebyshev’s inequality. One
can describe how in long series of trials the average X formed of
the independent and identically distributed events ¥ = Y7, V5, ... is
distributed about the expectation E(Y') via the approximation

P (1 - B[ 2 025 ~ 1= 60) + (1) = 2600
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e even for the value ¢ = ¢, about which Chebyshev’s inequality has
nothing to say, the central limit theorem tells us that the probability
is actually significantly smaller, namely, about 0.317. With the value
t = 2, Chebyshev’s inequality provides the generous upper bound
0.25, which the central limit theorem pares down to 0.046.

e with the dice test discussed in the previous chapter, the normal dis-
tribution can provide more precise information about the sum of the
dice rolls. Based on the assumption that the die is completely sym-
metric, one assumes an expectation E(Y) = 3.5 and standard devia-
tion oy = 1.708. Then the value ¢ = 2.58 corresponding to the rolled
average must lie between 3.456 and 3.544 with probability 0.99. Thus
asymmetric dice can be more easily identified than was possible with
the Chebyshev inequality.

e even the binomial distribution can be approximated with the normal
distribution. We again start with a series of trials, in which an ex-
periment is repeated n times, each trial independent of the others,
where the relative frequency X of a particular event is measured. If
the probability of that event in an individual experiment is p, then
the central limit theorem provides the following approximation for
long series of trials:

P(X§p+t w ~ ¢(t).

e let us take up an example that we introduced in Chapter 4. We are
to determine the probability of obtaining at least 900, and at most
1100, 6s in 6000 rolls of a die. With respect to relative frequencies,
this corresponds to the interval from 1/6 — 0.01675 to 1/6 + 0.01675.
Using the values +3.4814 of t, one then obtains the approximation
¢(3.4814) — $(—3.4814) = 0.0005 for the desired probability. To
be sure, the result could have been obtained using the formulas for
the binomial distribution, but that would have been computationally
impractical.

Asymmetric Roulette

The roulette wheels in gambling casinos are manufactured with
great precision, and moreover, they are regularly checked for
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symmetry. The reason for this is obvious. If some asymmetry
in the wheel was to lead to the probability of any particular
number exceeding 1/36, that would open to the public a clear
winning strategy. That is, the tiniest asymmetry could lead to
great losses for the casino if a player was to discover it, which
appears to have happened a number of times in the past. Thus
in the 1960s, Dr. Jarecki’s streak of wins, due apparently to a
defect in the wheel, received considerable press coverage.?

If one wishes to establish the existence of an asymmetry based
on statisties, then one must first take note of the fact that such
an asymmetry will not reveal itself all the time. For example,
the ball is tossed into the spinning wheel now from the left,
now from the right into the oppositely spinning wheel. If one
of the bridges is slightly higher than the others, its effect will
depend on the direction of motion. Furthermore, it is techni-
cally feasible to rotate the ring of numbers so that they lie over
different slots, which would allow possibly favorable slots to be
associated with different numbers over time.

In order to refute the hypothesis that a roulette wheel is fair,
one should perform a series of experiments under uniform condi-
tions. One must doubt, though, whether one would actually be
able to perform such experiments under the required conditions
in a real-world casino.

The first person to recognize a roulette permanence as highly
improbable was Karl Pearson (1857-1937), one of the founders
of mathematical statistics. He wrote about a two-week perma-
nence in Monte Carlo that even if the Monte Carlo casino had
been operating since the beginning of geological time, such a
permanence would not have been expected if one were dealing
with an unbiased wheel. It turned out later, as Edward Thorp
related (see Note 2 at the end of the chapter), that the actual
runs had apparently been invented by journalists, so that they
could avoid the tedious job of writing everything down.

P i

The great significance of the normal distribution in probability theory
not, of course, that one can use it for calculating probabilities of dice

48ee, for example, the Stuttgarter Zeitung of 7.7.1973, also reproduced in Max

Woitschach, Logik des Fortschritts, Stuttgart 1977, p. T5.
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rolls. As has already been suggested, the normal distribution is a distri-
bution of probabilities and frequencies that occurs frequently in nature,
technology, and economics. It comes into play when a process is deter-
mined by a large number of independent random factors. If an overall
result is obtained as the sum of independent random wariables, each of
which influences the result only slightly, then, like the sum of the dice rolls,
its distribution is approximately normal. Thus, for example, the heights of
adult human beings are approximately normally distributed, and not only
the entire population, but subpopulations as well, such as those of men and
of women, though of course with different expectations and standard devi-
ations. Quasi-random processes that are subject to the normal distribution
can even be found in the divisibility properties of the integers. Thus, for
example, in 1940, the mathematicians Paul Erdés (1913-1997) and Marc
Kac (1914-1984) proved that the number of primes by which a number
is divisible behaves approximately like a normal random variable. Thus
it is possible to approximate the frequencies with which such numbers of
divisors occur in a range of numbers bounded above by a large integer n
using a normal distribution with expectation and standard deviation both
equal to Inlnn.?

Railway Rivals: A Race Between Two Players

What are the odds when two players engage in a race in the
game Railway Rivals discussed earlier in this chapter? Infor-
mation is provided by the random variable that corresponds to
the difference in progress of the two players. We must compare
this difference in the dice sums of the two players with the orig-
inal lead, which can oceur in approximation to the central limit
theorem for every fixed number of throws of the dice. However,
in a race, the necessary number of turns is not fixed; rather,

SLet v{m) denote the number of primes by which the integer m is divisible. Then
for an arbitrary fixed value of ¢, one has the relation

1

lim —#{ m|1l<m<nwithv(m)>Inlnn+ tvlnlnn} = ¢(t).
L= 00 T

The relative frequency of numbers between 1 and n that have more than Inlnn+tv'Inlnn

prime divisors thus converges to ¢(t). One can find a proof of a greatly simplified version

of this theorem based on Chebyshev’s inequality and the prime number theorem in Noga
Alon, J. H. Spencer, The Probabilistic Method, New York, 1992, Theorem 2.1.
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it is itself a random variable. It therefore makes sense to be-
gin by approximating the number of turns by determining its
expectation.

Let us investigate a race in which player Jack has w squares
to traverse, while his rival Jill has w + d squares to the goal.
Since both players throw the dice the same number of times
(if both players cross the finish line, then the player who ex-
ceeded the goal by the most squares is the winner), it makes
no difference whether one or two dice are thrown (except for
the frequency of tie games). We therefore assume that only
one die is thrown. Since the difference between two rolls of
a die has standard deviation 2.415, the standard deviation for
w/3.5 turns is 1.291,/w, so that the probability of victory for
the leading player is approximately

. _d
@(0.770 \/Fu)

(we count a draw as half a win for each player). With route
lengths of 25 squares we obtain usable approximations to the
probabilities; thus, for example, for the races 25 : 20, 25 : 30,
65 : 60, and 65 : 70, we obtain the values 0.193 (exact value
0.210), 0.781 (exact value 0.768), 0.308 (exact value 0.313), and
0.685 (exact value 0.681). In particular, the approximation for-
mula allows us to estimate how profitable it is to take routes
over an opponent’s track. Since the winner of the race gets 20
points, and the runner-up gets 10, for the two players Jack and
Jill, the expectation for Jack is

10 + 10P(Jack beats Jill).

If there are three players—Jack, Jill, and Mira—then taking
shorter routes is even more advantageous, since the expectation
for Jack is now

10P(Jack beats Jill) + 10P(Jack beats Mira).
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Backgammon

If in the endgame of a backgammon match no more checkers can
be hit, then the game takes on the character of a race, called the
running game. Such endgame situations are generally evaluated
by adding up the remaining fields through which all a player’s
checkers must pass. If we imagine a hypothetical situation in
which each player has a single checker that is the distance of
this sum from the goal, then this corresponds to a simple model
that can be used to estimate the odds in an actual situation.
The power of this model can be improved if one slightly alters
the positions of both checkers depending on the details of the
original situation as well as the number and distribution of the
checkers to compensate for the points lost in the removal of
pieces from the hoard.

In practice, one is often interested in estimating the odds of win-
ning in order to decide whether one should double the stakes.
This special problem will be dealt with in detail in Chapter 31.

For our backgammon model we would now like to estimate the
odds of winning in the situation in which the leading player,
Jill, has w fields to traverse, and her opponent Jack has w + d.
Except for two details, all is the same as in Railway Rivals:

e if a player reaches the goal, the game ends at once, so
that the player whose turn it is has an advantage. Since
the players alternate in their turns, the advantage of first
move should be calculated at half a turn; that is, the player
whose turn it is receives a bonus in the number of fields
equal to half the expectation of a single turn.

e one plays with two dice, and if doubles are thrown, then
one moves twice the number shown. For the number of
fields traversed per turn, this gives an expectation of 8.167
and standard deviation of 4.298.

The game situation of w to w + d fields corresponds to an
expected number of turns of w/8.167 and standard deviation
2.127,/w. The probability of winning for the leading player is

85
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therefore approximately

. d+ 4.083
¢ (0.470———),

o

where the distance between the players is increased or decreased
by 4.083 depending on whether or not the leading player goes
first. The approximations are relatively exact for numbers of
fields that are not too small. Thus for the situations 20 : 25,
25 : 20, 65 : 55, 65 : 65, 65 : 75, and 65 : 85, the approximate
probabilities are 0.830 (exact value 0.829), 0.462 (exact value
0.451), 0.354 (exact value 0.358), 0.594 (exact value 0.595),
0.794 (exact value 0.787), and 0.920 (exact value 0.906). If we
consider a realistic situation, that is, one with several checkers,
then additional imprecision arises in using our model.

Risk

A race of quite another sort takes place in the game of Risk,
invented by the Frenchman Albert Lamorisse. It made its first
appearance in 1957. The Risk game board shows a stylized map
of the world. The fields on the board correspond to imaginary
countries, which—depending on the version—are to be either
conquered or liberated.® In one variant, the winner is the one
who frees the entire world by capturing all the enemy pieces,
which represent armies.

A turn consists in carrying out one or more attacks, in which
up to three armies occupying one country attack those of a
neighboring country. The defender can put up as many as two
(in the old variant three) armies in defense. The result of an
attack is determined by rolling the dice, where one die is rolled
for each army involved. The results of the roll are then, indi-
vidually for attacker and defender, sorted in ascending order,

SFurther description and illustrations can be in Erhard Gorys, Das grosse Buch der
Spiele, Hanau ca. 1987, pp. 283-286; David Pritchard, The Family Book of GGames,
Brockhampton Press 1983; Spiclboz 3, 1983, p. 22; Roberto Convenevole, Francesco
Bottone, La storia di risiko, Rome 2002.
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so that they can be compared, to the extent possible, with one
another. Each pair then decides a duel between an attacking
army and a defending army, where the attacker wins if his die is
higher. For example, a 3 : 2 attack with a roll of 6-4-2 against
4-4 results in both attacker and defender having to remove a
single army from the board: 6 wins against 4, while 4 against
4 represents a loss for the attacker.

So much for an overview of the rules. What the odds are in a
single battle are shown in the following table, which reflects the
combinatorial situation:

Attacker: Defender’s Loss
Defender
0 1 2 3 | Expectation | Standard
Deviation
1:1 21 15 0.42 0.49
1:2 161 55 0.25 0.44
1:3 1071 225 0.17 0.38
2:1 91 125 0.58 0.49
2:2 581 420 295 0.78 0.79
2:3 4816 | 1981 979 0.51 0.71
3:1 441 855 0.66 0.47
3:2 2275 | 2611 | 2890 1.08 0.81
3:3 17871 | 12348 | 10017 | 6420 | 1.11 1.07

In the later stages of a game of Risk, the number of armies on
the board generally increases dramatically. The odds for longer
duels between two strong armies can be estimated with the aid
of the central limit theorem. To simplify matters, let us assume
that the entire battle consists of a number of identical attacks in
the relation 3 : 2 and 3 : 3. Since after each attack the number of
armies on the board is reduced by two or three, we may proceed
as follows: if a is the number of attacking armies, and d the
number of defenders, then an attack is successful when the total
loss by the defender after a+d/2, respectively a+d/3, attacks is
at least d. In that case, the attacker still has at least one army,
while the defender theoretically is in the minus column, that is,
has actually already lost the duel. Using the numbers a + d/2
and a+d/3, as well as the tabulated expectations and standard
deviations, we finally obtain the following approximations for
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the attacker's probability of victory: for a 3 : 2 attack, we have

1.082td — g —~0.85

084+ :@(0.94‘1\/ []8101)‘
a4td

0.81\/—“’—2 a+

while for 3 : 3, we obtain

1119 g ~1.71d
3 i (O.G[Ja )
1.07, /254 Va+t
/_,-—w,
Chapter Notes
1. By converting to the form X’ = aX + b, one can obtain the other nor-

mally distributed random variables. An identifying feature of normally
distributed random variables is that the sum of independent normally dis-
tributed random wvariables is again normally distributed. As can be seen
in Table 13.1, the standardized normal distribution is concentrated in a
narrow region around zero. The values of ¢ can be calculated either with
the integral

60 =5+ o= [
or with the rapidly converging power series
t2 1

=V T

The function to be integrated in the first formula, together with the nor-
malization factor, namely,

o(t) =

I\DI'—‘

1 e 22 /2

v2r ‘
is called the density of the normal distribution. The graph of this function
is the well-known Gaussian bell curve, where each value ¢(t) can be inter-
preted as an area under the curve. This curve was to be found, together
with a portrait of its discoverer, Carl Friedrich Gauss (1777-1855), on the
German ten-mark note. The symmetry of the curve is a consequence of

the relation @(t) + o(—t) = 1.




Games of Chance 89

0.5

-3 -2 -1 0 1 2 3

2. E.O. Thorp, Optimal gambling systems for favorable games, Revue de
linstitute international de statistique/Review of the International Statisti-
cal Institute 37, 1969, pp. 273-293; particularly p. 276.
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And Not Only at Roulette:
The Poisson Distribution

It is hardly to be exrpected that in 37 spins of the roulette wheel, all 37
numbers appear exactly once each. How many different numbers will appear
on average?

Although a naive interpretation of the laws of equal probability might sup-
pose that all 37 numbers should appear once each, in fact, such an event
is almost impossible. For among the 37%7 possible events, there are only
37! that correspond to the possible permutations of the different numbers.
Therefore, the probability that all 37 numbers appear in 37 spins of the
wheel is 37!/3737 = 1.304 x 10713 = 0.000000000000001304. It is much
more likely to win the lottery twice in a row with all six numbers correct.

We know now that we can hardly expect to obtain all 37 numbers in
37 roulette spins. But how many different numbers should we expect to
see on average? That is, what is the expectation of the random variable
that represents the number of different numbers obtained? If we choose a
number, then the binomial distribution tells us how probable the different
possible numbers of “hits” are for this particular number. For example, if
X is the target number, then the probability P(X = k) that in n trials
there are k hits on this target is given by

pee =0 = () ) -prt

In our concrete example, the number of trials is n = 37, and the probability
is p = 1/37. It was indicated in our study of the normal distribution
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that the formulas of the binomial distribution are cumbersome to work
with. In addition to the option of using the normal distribution as an
approximation, in our present example, a much simpler approximation is
offered by the Poisson distribution. It is named for the mathematician
Siméon Denis Poisson (1781-1840). The Poisson distribution is based on
the observation that the probability of getting a particular one of the 37
numbers k times in 37 roulette spins remains practically unchanged when
the number of numbers and the number of spins are enlarged by the same
amount, that is, with 100 numbers and 100 spins, the probabilities P(X =
k) are about the same as before. We can see the underlying principle behind
this phenomenon by examining the formulas of the binomial distribution.
We assume that the product of the number of trials n and the probability
p in a single trial, namely, A = np, has a fixed value; in our example, we
have A = 1. If the probability p is now replaced by the expression A\/n,
then one obtains the chain of equalities

(:)pkﬂ-wzﬂ“'k

; n —k
:lxﬁxn-—lx---xiﬂ'_k-'_lx,xk 1—i 1-—i
k' n n n n n

Ak —X
He

P(X = k)

Il

At the end of the chain, the exact value is approximated with the help of
its limiting value, which is obtained as the number of trials n increases and
the probability p = A/n becomes correspondingly smaller, say, in passing
to a 370-number roulette wheel and ten times as many trials, and so on.
The error due to this approximation remains small if the probability p is
relatively small. Indeed, it can be shown that the sum of all deviations is at
most 2np?.? Regardless of how exact the approximations are in a concrete
case, the limiting values should be viewed as a probability distribution of
a random variable Y. The range of values encompasses the natural num-
bers k = 0,1,2,..., and the probability distribution, namely, the Poisson
distribution, is given by the formula

Ake_A
k!

P(Y = k) =

In our example, that is, for the parameter A = 1, one obtains the values
shown in Table 14.1. They show approximately how likely it is that in 37

1This theorem and more detailed discussion can be found in standard books on
probability theory, such as Ulrich Krengel, Einfiihrung in dic Wahrscheinlichkeitstheorie
und Statistik, Braunschweig 1988; particularly pp. 88 ff., Theorem 5.9.
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k Poisson Binomial Error
Distribution Distribution (Difference)
PY =k) P(X =k)
0 0.36788 0.36285 0.00503
1 0.36788 0.37293 0.00505
2 0.18394 0.18647 0.00253
3 0.06131 0.06043 0.00088
4 0.01533 0.01427 0.00106
5 0.00307 0.00262 0.00045
6 0.00051 0.00039 0.00012
7 0.00007 0.00005 0.00003

Table 14.1. Probabilties for multiple hits in 37 roulette spins.

roulette spins, a paricular number will appear k times. In particular, the
probability that a particular number will not appear at all in 37 spins is
more than one-third. As a comparison, we give the exact values of the
binomial distribution and the resulting errors.

For individual numbers, we now know the probabilities of various num-
bers of hits. But how does this relate to the totality of numbers? How
many different numbers are to be expected in 37 spins? A little trick al-
lows us to obtain the answer with the data at hand: we define, based on the
37 spins, the random variables Zy, 71, ..., Zs5, where each variable takes
on the value 0 or 1 according to whether the corresponding number occurs
exactly once. Based on the results already obtained, we have

E(Zy) = E(Z)) = - = E(Z35) = 0.37293.

It follows that the number of numbers Zy + Z; + - - - + Z3¢ hit exactly once
has the expectation

E(Zy) + E(Z1) + -+ + E(Z3g) = 37 x 0.373 = 13.8,

a value that in a long series of 37 spins should give approximately the
average value, according to the law of large numbers. This is the same
number that one would expect for numbers that do not appear at all. In
the roulette literature, this state of affairs is known as the “two-thirds law™:
in a series of 37 spins, called a rotation, approximately two-thirds of the
37 numbers should appear.

In everyday practice, the Poisson distribution comes into play above
all in determining the frequency of rare events. This could involve in-
sured accidents, repair service contracts, or events of atomic decay. In each
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case, the event is a rare one in relation to a particular object, be it an
insurance-policy holder or a particular atom, while due to the large num-
ber of objects, the event itself occurs frequently, whence its probability
distribution is given by the Poisson distribution. The first statistical ob-
servation of the Poisson distribution occurred toward the end of the 19"
century in the study of cases of death in the German army due to a horse’s
kick. The example can be found in the book The Law of Small Numbers,
by the mathematician Ladislaus von Bortkiewicz (1868-1931), which ap-
peared in 1898. The title of Bortkiewicz's book relates to the rarity of the
underlying events. The title suggests a negation of the law of large num-
bers, though that is not at all the case, and is thus more misleading than
helpful. Nonetheless, it is still occasionally used.

Finally, we should mention that the approximation formula derived in
Chapter 2 in relation to de Méré’s problem is also a special case of the
Poisson distribution. There we asked for the number of trials necessary for
the probability that an event occurs at least once to reach at least 1/2. If
we seek an approximate answer with the help of the Poisson distribution,
then the number n of trials must satisfy the condition P(Y = 0) <1/2. On
account of the formula P(Y = 0) = e "P, this inequality holds precisely
when n > In2/p.
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When Formulas

Become Too Complex:
The Monte Carlo Method

Two players, Jill and Jack, play a series of games of chance. They bet a set
amount each round. The probability that Jill wins any one round is 0.52.
If she loses a round, her stake goes to Jack and vice versa. At the start,
Jill has 5 chips, while Jack has 50. They play until one player is broke.
What is the probability the Jill wins, and how many rounds are played on
average before one player is bankrupt?

Even good odds of winning are no guarantee against bad luck. If one’s
starting capital is too small, it can happen that premature financial ruin
can prevent a player from profiting from the law of large numbers. But how
can this risk of ruin be calculated? Although there are formulas for this
classical problem, which goes back at least to Christian Huygens (1629-
1695), we would like to approach the problem from a different point of
view. Instead of looking for a formula, we shall simply set up a series of
trials and see what happens. But since that could become a bit boring
after a while, we are not going to play the game ourselves. Instead, we
shall entrust the play and evaluation of the results to a computer.

But how is the computer going to determine the results of a game? It
does not have any built-in dice, does it? There are two ways to proceed:

e one could carry out a random experiment apart from the computer,
and then input the results into the computer. To save effort, one
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could use roulette permanences obtained from casinos. The list of
random numbers thus obtained could then be used for a variety of
purposes, including the one that we are presently considering.

e the computer could generate random numbers itself. As we men-
tioned in Chapter 8, computation and randomness are mutually ex-
clusive. However, there are calculational procedures whose results
behave statistically like random numbers. We therefore speak of
pseudorandom numbers. To all appearances, according to the re-
sults of empirical investigations, the digits in the decimal expansion
of w behave like a sequence of pseudorandom numbers: at each place,
each of the ten digits appears equally likely to appear.

In practice, today, in general, only the second method is used, since it
involves considerably less effort. However, one does not need to calculate
the digits of 7, since there are much simpler algorithms that serve the pur-
pose, and that furthermore have the advantage that one can make precise
statements about the “quality” of the randomness that is produced. To
program a sequence of random numbers does not require a great deal of
thought, for every compiler or interpreter of a programming language has
available a pseudorandom number generator. For example, the expressions
INT(100*RND(a))+1 in Basic and Random(99) + 1 in Pascal produce uni-
formly distributed pseudorandom numbers between 1 and 100. The result
of a single game as described at the beginning of this chapter can thereby
be simulated by comparing the randomly obtained number to 52. If it is
less than or equal to 52, then we chalk up a win for Jill, which will occur
with probability 0.52. The remainder of the program keeps track of the
amounts of money in possession of the players, and performs a statisti-
cal evaluation of the results. Table 15.1 shows the results of a computer
simulation.

In spite of her slight advantage of winning a single game, Jill's long-
term prospects are bleak. The precision of these experimentally obtained

Number of Average Jill’s Winnings Jack’s Winnings
Series Game Length

10 567.40 0.4000 0.6000

100 323.54 0.3600 0.6400

1000 338.16 0.3430 0.6570

10000 326.70 0.3347 0.6653

100 000 333.89 0.3344 0.6656

Table 15.1. Results of a simulation of the game between Jack and Jill.
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results can be seen from considerations of the law of large numbers and the
central limit theorem. These tell us that if a series of trials is long enough,
then a large deviation between the relative frequency and probability of
an event is highly unlikely. However, to achieve a high degree of accuracy,
long series of trials are necessary, since for a given level of confidence, the
precision is doubled only when the length of the series is quadrupled. In
general, as we said in Chapter 13, with n attempts, the probability of a
deviation of more than 2.58/2,/n is at most 2¢(—2.58) = 0.01. So with
100000 trials, the error is less than 0.004 with 99% certainty.

An experiment of the type that we have just described is said to be car-
ried out by a Monte Carle method. Its advantage is that approximate re-
sults can be obtained quickly and simply using a universal approach whose
precision is generally acceptable in practice. The simplicity of the method
makes it possible in particular to carry out simulations under a variety of
conditions and to compare the various results. In this way, one can deter-
mine numerically, for example, the dependency of the result on the intitial
parameters. It is also possible to optimize a decision process, for example,
in a game in which chance plays a role. However, caution is advised against
trying to measure something, such as an infinite expectation, that cannot
actually be measured.

Since Monte Carlo methods are impracticable to carry out without the
aid of a computer, it is not surprising that such methods have existed only
about as long as the computer has. Although the theoretical underpinnings,
in particular the law of large numbers, have long been known, it was not
until 1949 that there appeared a publication on Monte Carlo methods.!

In fact, the Monte Carlo method was established three years prior to
that date, namely, in 1946, by Stanislaw Ulam (1909-1984). Important
contributions to the subject go back to John von Neumann (1903-1957),
who used them in connection with calculating nuclear reactions.

Perhaps the most truly magnificent idea regarding Monte Carlo meth-
ods was to use them in domains that in principle are not subject to the
influences of randomness. The first, though historically isolated, example
is Buffon’s needle problem, on the basis of which we demonstrated in Chap-
ter 7 how the decimal expansion of 7w can be experimentally determined.
That procedure can be generalized to the determination of arbitrary areas
and volumes. For example, if the three-dimensional coordinates (z,y, z) are
generated by three independent uniformly distributed random variables in
the interval from —1 to 1, then using the inequality z2 + 4% + 22 < 1 one
can ask whether the randomly generated point lies within the sphere of

IN. Metropolis und S. Ulam, The Monte Carlo method, Journal of the American
Statistical Association 44, 1949, pp. 335-341.
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radius 1 and center at the origin. The probability that the inequality is
satisfied is the ratio of the volume of the sphere to that of the cube of side
length 2. Even higher-dimensional hypervolumes can be approximated in
this way. For example, one could attempt to calculate the volume 72 /2 of
the hyphersphere of radius 1.

When we talked about the ruin problem, we did not go into the question
of how long the game is expected to last. To use the central limit theorem
to say something about this, we must know the standard deviation of the
length of the game. However, in practice, it suffices to approximate the
standard deviation by means of a simulation. This can be done by using,
instead of the unknown probability distribution, the approximately equal
distribution of the relative frequencies. In the simulation results recorded
in Table 15.1, for one million series of games there was a standard deviation
of 439. With 99% certainty, there is then an error for the average length
of a game that is at most 2.58 x 439/1000 =~ 1.1.

The Generation of Random Numbers

We have referred to the program libraries available for the var-
ious programming languages that have functions for the gener-
ation of random numbers. But how do these random number
generators work? How can one generate one’s own random
numbers? This is an important question, because with long
Monte Carlo simulations, the precision of the results is greatly
dependent on the quality of the random numbers used. The ran-
dom number generators implemented in the various program-
ming languages are not always adequate.

In the period in which the computer was not generally avail-
able, one simply used tables of random numbers. One of the
most extensive such tables, from the year 1955, contained one
million random digits. If we had not already seen applications
of this in the examples presented, we might well have shaken
our heads in disbelief at such a monumental opus. Further-
more, such random numbers were not generated with a roulette
wheel or with dice, but instead, sources were the likes of the
middle digits from statistical census tables. Moreover, in order
to generate random numbers more quickly, modified “wheels of
fortune” were constructed, whereby a number was selected us-
ing an electronically controlled flash. To exclude errors due to
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conceptual shortcomings, the random numbers were then sub-
jected to statistical tests.

For computer simulations, such permanent generated lists of
random numbers are not very suitable, since it is uneconomical
to store long sequences of random numbers. Therefore, mathe-
maticians who participated in the development of Monte Carlo
methods came up with other techniques. They sought programs
that would generate sequences of random numbers as needed.
That seems simpler than it actually is. The main difficulty is
that computers are entirely deterministic in their calculations.
That is, a given input will always produce the same output, and
thus that output cannot be random. However, it is possible to
generate numbers that “act as if” they were random. What is
meant is sequences of numbers that, like the decimal digits of
m, do not reveal any regularities when subjected to statistical
tests. Such sequences are called pseudorandom.

The method used most frequently for generating pseudorandom
numbers depends on a theorem about prime numbers. The
following table demonstrates the principle in a simple case, one
that is not suitable for practical use. It shows 100 numbers
between 1 and 99 generated in random order:

15 24 99 17 7 92 26 82 10 16
66 45 72 95 51 21 74 T8 44 30
43 97 34 14 83 52 63 20 32 31
90 43 89 1 42 47 55 88 60 96
93 68 28 65 3 26 40 64 62 79
8 77 2 84 94 9 75 19 91 85
35 56 29 6 50 80 27 23 57 T1
53 4 67 87 18 49 38 81 69 70
11 58 12 100 59 54 46 13 41 5
8 33 73 36 98 T6 61 37 39 22

Let us check the randomness of these numbers without any
knowledge of how they were generated. The first thing that we
observe is that each of the numbers between 1 and 100 appears
exactly once, which in fact, is highly unlikely to be the result
of a random process. Indeed, the formula that produced this
list generates each of the numbers from 1 to 100 exactly once.
Each number is generated from the one before it, and after all
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of them have been run through, the cycle begins again. That
is, after 22 comes 15. The formula for this sequence of numbers
Iy, Tay, Tzy.-- is

Tpi1 = 42z, (mod 101).

The expression “mod (101)” is short for “modulo 101,” which
means that after the product 42z, is calculated, 101 is repeat-
edly subtracted from the result until an integer in the range 0
to 100 is obtained. For example, since the first number is 15,
the next number is calculated by taking 42 x 15 = 630 and then
subtracting 101 six times, leaving the remainder 24. Therefore,
the next number in the sequence is 24. Since the number of
times 101 is subtracted varies erratically, it is difficult to see
the regularities in the sequence.

The reason that this formula generates all the numbers between
1 and 101 is, as we have mentioned, a theorem about prime
numbers. That theorem tells us that for each prime number p,
there is at least one number a between 1 and p — 1 such that
the numbers 1,a,a?,a®,...,a?"!, when taken modulo p, yield
a complete set of the integers from 1 to p — 1 (see Note 1 at the
end of the chapter). In our example, p = 101 and a = 42. To
generate pseudorandom numbers, it is necessary to use much
larger prime numbers; usually, numbers of order of magnitude
at least 10 are used. Once a prime number p is fixed, there
are quite a few choices for the number a that will generate a
sequence of all the integers from 1 to p— 1 in pseudorandom or-
der. One is limited to those choices that will give the sequence
a random character. In particular, each number should be fol-
lowed by numbers of a variety of orders of magnitude, and that
excludes relatively small values of a.

To obtain random numbers that are universally applicable, the
sequence that is generated is usually transformed to fall in the
range between 0 and 1. This is done via division by p. From
such a random number y, one could use, say, INT(6*y+1) to
obtain the integer part of the real number 6y + 1, which is less
than 7 and greater than 0, thus obtaining an integer in the
range from 1 to 6 that could simulate the result of throwing a

die.

Many random number generators in use employ a generalized
algorithm. In some cases, the remainder taken is not based
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on a prime number, while in others, a more complex recursion
formula is used. Generally, one obtains a new random number
Tyt from the k previous numbers with a formula of the type

Ttk = Q0Lnp + @1 Tpt1 + -+ Qp_1Zz21-1 + b (mod m).

Here ag,ay,...,ar_1,b, m, as well as the starting values x1, xs,
..., &y, are suitably chosen integers. All the numbers generated
are integers between 0 and m — 1, where the period of the
sequence can be at most mF.

For the simply constructed random number generators, that is,
those with £ = 1 and b = 0, the following parameters are usual:

ap i
R13 939
5 15 235
5 17 24(}

23 100000001
100 003 | 10 000 000000

In practice, one also sees combinations of various random se-
quences (see Note 2 at the end of the chapter).

Snakes and Ladders

A nice example of a Monte Carlo method is the 1960 investi-
gation? of a game of snakes and ladders.> The original version

2N.W. Bazley, P.J .Davis, Accuracy of Monte Carlo metheds in computing finite
Markow chains, Journal of Research of the National Bureau of Standards, Mathematics
and Mathematical Physics B64, 1960, pp. 211-215. See also 5. C. Althoen, L. King, K.
Schilling, How long is a game of snakes and ladders? The Mathematical Gazette TT,
1993, pp. 71-76.

3Directions and more information about the game can be found in Erwin Glonnegger,
Das Spiele-Buch, Munich 1988, pp. 54-55; R. C. Bell, Board and Table Games from
Many Civilizations, New York 1979, volume 2, pp. 10-11; Frederic V. Grunfeld, Spicle
der Welt, Frankfurt 1985 (Dutch original 1975), volume I, pp. 74 f.
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of snakes and ladders involves a race in which each player tries
to be the first to move a playing piece to the winning square,
where moves are made according to a throw of the dice. In the
version that was investigated in the research article, the board
contained 100 squares. The game starts at square 1, and the
winning square is 100. A single die is thrown, and the player
moves his or her piece that many squares forward. The player
has no choice as to how to move. One must reach square 100
exactly: if the number on the die would take the piece beyond
square 100, the piece stays where it is. There is no influence of
one piece by another. That is, players’ pieces do not block or
capture each other. What adds spice to the game is the ladders
and snakes (or chutes, in one version) depicted on the board,
as shown in the figure.

100 991 98| 97| 96| 95| 94 921 91
N \

93
LY \ I |
\%\I 82 283 84| 85 &%6 87 ﬁ‘& 89 éé\
NN A\
A I
73

Il ~ v
80| 791 T8 TTRNNI6| T5 )74

61| 62]63 64 (}\ 66 | \67| 68| 69| 70

1 y ~]

60rT 5(’ ~% | 57 55"“%( 53| 33T s

a| a2 43| 44| a 46\-{? 48| 49| s0
// S

If a piece lands at the bottom of a ladder, it ascends to the
top, and if it lands at the top of a snake, it slides down to the
bottom.*

In the investigation under discussion, the researchers deter-
mined the average number of turns it would take for a player
to arrive at the winning square. A Monte Carlo method turned

4In a particularly dramatic version of the game the board depicts a mountain that
pops up when the board is opened. The game pieces represent mountain climbers who
are held to the mountain by invisible magnets fastened from behind. If a player arrives
at a square without a magnet, the climber falls down a distance on the mountain.
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out to be quite simple, in comparison to working out the prob-
abilities mathematically, as we shall do in Chapter 16. The
result was an approximation of 39.225 for the expected number
of turns.

Statistics: Sample Functions and Their Distribution

In Chapter 12, a die was judged asymmetric because the theo-
retical expectation was not matched by the experimental result:
beginning with the hypothesis that the die was in fact symmet-
ric, particular results of a series of trials were predicted with al-
most certain probability. Because the results of the experiment
did not correspond to the predictions, the starting hypothesis
had to be rejected. In our concrete case, the sum of the num-
bers from the various throws of the die was taken as the test
variable. Of course, the underlying principle is independent of
the details of how the test variable is calculated.

As an example, let us again take a die, which is thrown n times.
In principle, one may take for the test variable, which in statis-
tics is generally called a sample function, any random variable
determined by the series of trials. Particularly suitable are those
random variables that react strongly to deviations in the prop-
erty being tested. For finite distributions, this is achieved by
the the x? function, which was devised in 1900 by Karl Pear-
son, which in the case of a die is calculated from the absolute

frequencies hy, ko, ..., hg with the formula
2 2 2
hi — in hy — in he — in
P ) S S O N I
gn gn gn

In general, within a series of trials, the x? function measures
all deviations between the measured frequencies and their ex-
pectations, which in our example is /6 in each case. One can
derive, with deep mathematics, how the values of the x? func-
tion are distributed. It turns out that the distribution of the 2
function depends almost exclusively on the number of possible
results, and not on the number of trials and the probabilities of
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the individual results; however, the expectations resulting from
these data cannot be too small for the individual frequencies.
The theoretical considerations and the not-so-simple calcula-
tions can be avoided if one uses a Monte Carlo method. That
is, before one actually carries out a series of trials with a die
that is under investigation, one should simulate a large number
of series of trials on the computer. For example, one can run
999 series of trials. If the result with the die is significantly dif-
ferent in comparison to these 999 results, then the hypothesis
that the die is symmetric can be rejected. But what is meant by
“significantly different”? Since asymmetric dice produce larger
x? values than symmetric dice, one simply considers the great-
est ten of the 999 simulation results as outriders. If the test
result lies above those of the 989 lowest simulation results, then
there are two possible causes:

e the die is asymmetric; the hypothesis is correctly rejected.

e the die is symmetric, so that the result of the experiment
is an outlier; rejecting the hypothesis in this case is an
error.

In a particular situation, one cannot say which is the case. How-
ever, the a priori probability that such a procedure will lead to
an incorrect rejection of the hypothesis, that is, before the be-
ginning of the simulation and the dice experiment, is at most
0.01. The reason for this is clear: if the die is actually sym-
metric, then the simulated and actual series of trials produce
identically distributed random variables. If at the end of the
experiment one sorts all one thousand results according to size,
then every level from 1 to 1000 is equiprobable for the x? value
of a series of trials, and for exactly ten of them, the initial
hypothesis is rejected, although it was actually correct.

The possible objection that such an elaborately constructed
x? sample function was unnecessary is only partially justified.
Even with other, less cleverly constructed, functions, correct hy-
potheses are rejected with the same probability. However, the
quality of the x? function is shown elsewhere: since it reacts
strongly to deviant probabilities, the danger that the hypoth-
esis of a symmetric die will not be rejected in the case of a
strongly asymmetric die is relatively small.

Incidentally, the 999 series of trials with 1200 rolls each yielded
a rejection region of 14.67 up; in statistical tables, in the section
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on the y? distribution with five degrees of freedom, one finds
the associated expectation of 15.09.

— .

Chapter Notes

1. The arrangement of the integers from 1 to 16 obtained in this way for the

case p = 1T was used by Carl Friedrich Gauss to prove that the regular
17-gon is constructible with straightedge and compass. He made his discov-
ery, as he later noted, “by strenuous thinking...in the mornings. .. (even
before 1 arose),” and he thereby solved a general construction problem
that had been formulated in antiquity and left unsettled. With the entry,
“Foundations on which the division of the circle is based, and indeed, its
geometric divisibility into seventeen parts, etc., Braunschweig, March 30,”
the 18-year-old Gauss began a diary in which throughout the period of his
creative work he set down many remarkable results. The notebook, in the
original Latin together with a German translation, is available in the series
Ostwalds Klassiker (number 226, Leipzig 1976). The first quotation above
comes from one of Gauss’s letters (Carl Friedrich Gauss, the Prince of
Mathematics in Letters and Talks, published by Kurt-R. Biermann, Leipzig
1990, p. 54). The methods of constructing the regular 17-gon—the coor-
dinates of the vertices are calculated with the aid of the complex solutions
of the equation 2#!7 — 1 = 0 expressed in terms of quadratic equations—
can be found in B.L. van der Waerden, Algebra, New York 1991, and
Jorg Bewersdorfl, Algebra fiir Finsteiger: Von der Gleichungsauflisung zur
Galois- Theorie, Braunschweig 2002, pp. 67-71. An explicit construction is
described by lan Stewart in his article Gauss, Scientific American 237:1,
1977, pp. 122-131, as well as in the ninth lecture in Heinrich Tietze's book,
Famous Problems of Mathematics, New York 1965.

Among the decisive criteria for the quality of a random sequence are the
uniformity of the distribution in the interval from 0 to 1 and the general
independence of the numbers as they follow in sequence. The latter is im-
portant, for example, when several random numbers in sequence determine
an event. In a controlled setting, the independence of a sequence of ran-
dom numbers can be achieved if several sequences of pseudorandom number
sequences are interleaved into a single sequence. If the periods of these se-
quences are mutually coprime (no common factor), then the total sequence
contains all combinations in which the numbers follow one another. This
can be done, for example, with the Sophie Germain primes pi,ps,.. ., such
as 999521, 999611, 999623, 999653, 999671, 999749, 1000151, which have the
property that all the numbers 2p; + 1 are prime. With an arbitrary factor
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a# —1,0,1 (mod 2p; + 1), one first obtains individual sequences with pe-
riod p; or 2p;. If one mixes these sequences together, the result is a sequence
with period pipz -+ or 2pips---. If one then transforms the normalized
pseudorandom number ¥ in the interval (0,1) by ' = 2min(¢, 1 — y), one
then obtains a uniformly distributed sequence with period pips-- -, where
there are as many independent consecutive numbers as distinct primes p;
used.

Further Literature on Monte Carlo Methods

(1] I.M. Sobol, Die Monte-Carlo-Methode, Frankfurt 1985.

2] S.M. Ermakow, Die Monte-Carlo-Methode und verwandte Fragen, Munich
1975.
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Markov Chains and the
Game Monopoly

In the game Monopoly, one wishes to evaluate the various properties ac-
cording to the expected income from rent. How should one proceed?

Among games that are protected by copyright, Monopoly,! with over 185
million copies sold, is one of the most successful. Since its invention by the
American Charles Darrow in the year 1931 it has influenced the develop-
ment of many other games based on economics, none of which, however,
has achieved the worldwide popularity of Monopoly. We should mention,
though, that Monopoly did not materialize out of nowhere; it had forebears
whose similarity to Monopoly suggests that one or more of them may have
inspired its creator. For example, there exists a 1904 patent application
for a “Landlord’s Game.”? Not only did this game employ a game board
with 40 squares around the perimeter, it also had special corner fields and

!For more information on Monopoly, see Erhard Gorys, Das Buch der Spiele, Hanau,
ca. 1987, pp. 357-359; Werner Fuchs, Spielefiihrer 1, Herford, 1980, pp. 75 f.; David
Pritchard, The Family Book of Games, Brockhampton Press, 1983, pp. 186 f.; David
Pritchard (ed.), Modern Board Games, London 1975, pp. 85-91 (with contributions by
David Parlett); Mit grossen Scheinen und kleinen Steinen, Spielbozr 4 1983, pp. 8-14,
40-43. Maxine Brady's Monopoly, New York 1974, is devoted exclusively to Monopoly.

2For information on the Landlord’s Game, see Sid Sackson, A Gamut of Games, New
York 1969; Erwin Glonnegger, Das Spiele-Buch, Munich 1988, p. 114; Dan Glimme,
Barbara Weber, Monopoly: die internationale Geschichte, Spielboz 4 1995, pp. 10-14
and 1995/5, pp. 4-8; Willard Allphin, Who invented Monopoly? Games and Puzzles
34 1975, pp. 4-T; Philip Orbanes, The Monopoly Companton, Boston 1988, pp. 25 ff.
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railroads at the midpoints of the four sides. The location of the utilities
differs from that of Monopoly by a single square. Moreover, the Landlord’s
Game has as its theme the buying and renting of 22 pieces of property.

In the opening phase of a game of Monopoly, each player attempts to
acquire various properties. A player may buy only those unsold properties
on which his game piece has landed. A player whose piece lands on a prop-
erty owned by an opponent must pay the owner rent. At first, these rents
are rather low. However, once a player owns a matched set, a “monopoly,”
of two or three properties, then the rent is doubled. With additional in-
vestment, the owner of a monopoly may build houses or a hotel, and the
rents rise steeply.

Any serious analysis of Monopoly must provide the player with well-
founded advice on making the choices that arise in the game, which have
mostly to do with the purchase and sale of properties, including to and
from the other players, as well as the building of houses and hotels. Just
as in real-world real estate transactions, the costs of investment must be
weighed against the prospective increased return. Since Monopoly contains
a large measure of chance, the prognosis of returns can be made only on the
basis of probabilities and expectations. Thus the amount of income that
can be expected from a monopoly on which buildings have been erected
depends on the amount of rent that will be collected per “visit,” as well
as the probability that such a visit will occur. What are the probabilities
for the 40 fields? They are certainly not equiprobable, for the symmetry is
greatly disturbed by the “Go to Jail” square, the “Chance” and “Commu-
nity Chest” cards, and the rule that if one rolls doubles three times, one is
sent directly to jail.

It is certain that computer simulations are the best route to determin-
ing the probabilities of landing on the various squares of the game hoard.
However, the probabilities can be calculated. In order to see how that
can be done, let us consider first a simpler example, which can be seen in
Figure 16.1.

The figure shows a circuit of four squares in which a game piece is
moved the number of squares determined by the roll of a single die. The
game begins at square 1, labeled “Go.” If the piece ends up on square 4,

2 3
T Go
1 4

Figure 16.1. A dice circuit with four fields.
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End Field
1 2 3 4
1(1/6 1/2 1/3 0
211/6 1/2 1/3 0
311/3 1/2 1/6 0
411/3 1/2 1/6 0

Start Field

Table 16.1. Transition probability matrix for the dice circuit.

it is moved immediately to square 2. As we asked in Monopoly, we can
ask here for the probabilities of the game piece landing on the various
squares. There is no point looking for a situation of equiprobability. We
need to look at the various throws of the die, and how they translate into
positions on the game board. These determine the transition probabilities,
which specify the probabilities of moving between two given squares. These
probabilities never change. Thus one always goes from square 1 to square
3 with probability 2/6, namely, the probability of rolling a 2 or a 6. The
probability of starting on square 2 and remaining there is 3/6, namely, the
probability of rolling a 2, a 4, or a 6. The transition probabilities are shown
in Table 16.1.

If we now wish to calculate the probability of ending up on a particular
square after a certain number of moves, we can use the transition probabil-
ities. If we let p,(1), pn(2), pn(3), pn(4) denote the probabilities of landing
on the indicated square after n turns, then we note the following:

e the starting situation, in which the game piece is standing on the first
field, can be represented by the values

po(l) =1, po(2) =po(3) =po(4) = 0.

e a move can be described by the transition equations®

Prr(1) = £ (palD) + pu(2) + 20,(3) + 2 (8)).
Pr1(2) = 3 (pal1) + Du(2) + 20,(3) + 2 (8)).
P é(z-pn(l) +200(2) + pa(3) + P0 (),

3) =
)

[
o

pn+l(

3This result comes from the formula for total probability (see Chapter 9), since
transition probabilities are a form of conditional probabilities.
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n Pa(l) Pn(2) | Pn(3) Pnl(4)
0 1.0000000 | 0.0 0.0000000 | 0.0
1 0.1666667 | 0.5 0.3333333 | 0.0
2 0.2222222 1 0.5 0.2777778 | 0.0
3 0.2129630 | 0.5 0.2870370 | 0.0
4 0.2145062 | 0.5 0.2854938 | 0.0
5 0.2142490 | 0.5 0.2857510 | 0.0
6 0.2142918 | 0.5 0.2857082 | 0.0
7 0.2142847 | 0.5 0.2857153 | 0.0
3 0.2142859 | 0.5 0.2857141 | 0.0
9 0.2142857 | 0.5 0.2857143 | 0.0

Table 16.2. Development of the four state probabilities of the dice circuit.

Thus, after the first throw, the probabilities are

1 1 1
p1(l) = —, 2 ==, p1(3) ==, 4}y =10,
Pl( ) 6’ Pl ) > Pl( ) 3 Pl ) ;

while after two throws, they are

2 1

o B =g mB) =g =0

(1) =
Pz() 9 9

The further development is recorded in Table 16.2.

The table indicates that as the number of turns increases, the state
probabilities rapidly approach a stationary probability distribution. Al-
though it was not obvious a priori, we note that when we asked for the
four probabilities, we were implicitly assuming such a stability. The way in
which this stationary probability distribution was demonstrated was rather
complicated, and we might ask whether there is a simpler approach, and
indeed, that is the case. Clearly, if there is a stationary limiting distrib-
ution p(1),p(2),p(3), p(4), then it should repeat itself when the transition
probabilities are applied. That is, they must satisfy the system of equalities

p(l) = é(p(l) +p(2) +2p(3)),
p(2) = %(p(l) +p(2) +p(3)),

p3) = :;(p(l) +2p(2) +p(3)),
p(4) =0,
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with the condition
p(1) +p(2) + p(3) + p(4) = 1.
Without difficulty, one obtains the desired probability distribution

3

1) =2, p(2) =

B3| =

The example that we just analyzed, as well as our actual topic, the game
of Monopoly, suggests that the phenomena that we have been observing are
special cases of general principles that are applicable to other games as well.
Before we return our attention to Monopoly, we would like first to discuss
some of the foundational ideas that go back to the Russian mathematician
Andrei Andreyevich Markov (1856-1922), namely, the theory of Markov
chains.

Up to now, when we have investigated random sequences, it has been
for the most part sequences of independent events, such as those obtained
in a sequence of dice rolls. As we have put it, dice do not have a “memory.”
The situation is quite different when we consider the situation of a piece
on the game board, say, on our dice circuit. Here the events of being on
one or another of the four fields after n rolls of the die are not independent
of where the piece was sitting after m rolls. However, and this is the fact
that we wish to emphasize, it is only the current field on which the piece
is standing that has any bearing on where it will be after the current turn.
That is, the past history of the game piece’s movement plays no further
role. Therefore, the dependence relationships within the random sequence
are limited, namely, by a “memory” that is only one turn long. A general
model for such situations is given by Markov chains.

A Markov chain is a sequence of random trials in which precisely one of
a finite set of events occurs. Furthermore, the probability that a particular
event occurs on the (n+1)th trial depends only on the event of the nth trial,
and not on any of the prior events. That is, the conditional probabilities for
the event occurring on the (n-+1)th trial are the same whether the condition
is based on the event of the nth trial or on the nth event together with
some of the previously occurring events.

A special vocabulary has developed for Markov chains, based on the
terminology of physics. Thus the occurrence of an event is interpreted as
a sojourn in a state. One thus obtains a system that always finds itself
in one of a finite number of states and whose changes of state take place
at fixed intervals in a random fashion. In every case, the probability that
the system will move from one state to another is governed hy these two
states only, not by the time at which the state change ocecurs or any of
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the previous history. Mathematically, a Markov chain amounts to a square
array of transition probabilities, called the transition matriz. For more
details, see “A Brief Primer on Markov Chains.”

In our example of the dice circuit, the Markov chain comprises four
states, corresponding to the four fields, where the current state of the
Markov chain is determined by the location of the game piece. We have
already written down the transition matrix. Another example of a Markov
chain is the game snakes and ladders, introduced in the previous chapter.
And even the ruin problem discussed earlier can be seen as a Markov chain
if the current distribution of wealth is viewed as a state (see “The Ruin
Problem as a Markov Chain").

In order to investigate the development of a Markov chain, the sojourn
probabilities are calculated, that is, the probabilities that the system is in
a particular state at the nth trial. However, it is frequently sufficient to
ascertain the trend of the sojourn probabilities. Thus for the Markov chain
of the dice circuit, a stationary state distribution arrived at over time can
be derived from the transition probabilities. With the ruin problem and
with snakes and ladders, there are other issues to deal with.

e T
.
L

Snakes and Ladders as a Markov Chain

In addition to the 100 squares, the start situation is also con-
sidered a state, so that one obtains a Markov chain with 101
states. The transition matrix consists of 101 x 101 = 10201
probabilities, so that we are able to reproduce only a part of it
here. Note that as with all transition matrices, the probabilities
along a row always sum to 1:

To
0 1 2 3 4 5 6 7 5 ... 100
From 0 [0 0 1/6 1/6 0 1/6 1/6 0 0 ... 0
110 01/6 1/6 0 1/6 1/6 1/6 0 ... 0
210 00 1/6 0 1/6 1/6 1/6 1/6 ... 0
100(0 0 0 0 00 0 0 0 R |

Using these data, beginning with the initial probabilities po(0) =
1 and po(1) = po(2) = -+ = p(100) = 0, we can determine the
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further development of the probability distribution, just as we
did in the dice circuit problem. In the limit, as stationary distri-
bution we have p(0) = p(1) = --- = p(99) = 0 and p(100) = 1;
that is, eventually the player reaches the goal square. What is
more important, though, is that from the development of the
sojourn probabilities one can also obtain the probability distri-
bution of the length of the game, together with its expectation
of 39.224.

The Ruin Problem as a Markov Chain

The ruin problem that we studied in the previous chapter using
a simulation is considered here in a generalized version. We
begin with a total capital of n units and the probability p that
Jill wins a round against Jack. We shall denote Jill’s probability
of losing by ¢ = 1 — p. This problem may be represented by
a Markov chain with n + 1 states, where the current state is
indicated by the amount of capital in Jill’s possession: at state
0, she is ruined, while at state n, it is Jack who is ruined. The
transition matrix looks as follows:

State After
0o 1 2 3 n—2 n—1 n
State 0 1 0 0 0 0 0 0
Before 1 g 0 p 0 0 0 0
2 0 g 0 p 0 0 0
n—210 0 0 0 0 p 0
n—1]10 0 0 0 q 0 P
n 0 0 0 0 0 0 1

In contrast to our other examples, here there is no unique limit-
ing distribution, since the relation between the two probabilities
of ruin depends on the initial distribution of the capital n. To
calculate these probabilities is not particularly difficult: if r(k)
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is the probability that Jill loses her initial capital of k in the
course of the game, then we have

r(0)=1, r(n)=0,

since in these two cases the game is already over. For 0 < &k < n,
we can determine the probabilities r(k) from r(k—1) and r(k+1)
if one assumes knowledge of the next round:

r(k) =qr(k — 1)+ pr(k+1).

For ¢ > 0, setting s = p/q, one thereby obtains the general
formula (see Note 1 at the end of the chapter)

o L4sd.- 4 snthtl
rh) = T s e

One may also obtain a general formula for the expected length
{(k) of a game. Clearly, we have £(0) = 0 and £(n) = 0. In the
case 0 < k < n, we again consider the course of the subsequent
round:

Uk)=plk+1)+qb(k—1)+1.

For p # g, we then obtain the formula (see Note 2 at the end
of the chapter)

_ 1 o 7 {9”_’“ - 1)
bk) = —q(s —) (n k E——— ) .

In the case p = g = 1/2, we have simply £(k) = n(n — k).

For the example of the previous chapter, that is, with p = 0.52
and n = 55, we obtain r(5) = 0.6661 and £(5) = 334.1304.

P i

We once again turn our attention to Monopoly. We first need to figure
out just what the states are that we need to distinguish. There is the
complication that if doubles are thrown, the player gets to throw the dice
again. The same applies to a second throw of doubles. However, a third
set of doubles does not result in that number of squares being traversed,
but in the player being sent at once to Jail. Thus on a single turn, a player
can land on one, two, or three squares, with all rights and responsibilities
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Sguare Froperty FProperty Prolb. Prol. Maximal Rent (US)
German Edition S Edition [ German ) {US) Aba. Exp. Group
o Los Go 0. 02880 0.02014
1 Badstr. Mediterranean Avenue 0.02436 0.02007 250 5
2 Gemeinaschaltafeld Community Chest 001763 0.0L775
3 Turmstr. Ealtic Avenue 0.02040 002037 450 a9 14
4 Einkommenasteuer Income Tax 0.02210 0.02193
5 Sidbahnhofl Reading Railroad 0.02686 0.02801 oo 5]
6 Chauseestr. Oriental Avenue 0.02160 0.02132 550 1z
T Ereignizfeld Chance 0.00872 000815
8 Elisenstr. Vermont Avenue 0.02246 0.02187 350 1z
9 Foststr. Connecticut Avenue 0.02217 0.02168 500 13 ar
1o Mur zu Besuch Juat Visiting (Jail) 0.02184 0.02139
11 Seestr. St. Charles Place 002506 0.02556 Ta0 19
1z Elektrizititewerk Electric Company 0.02378 0.02614 T 2
13 Hafenstr. States Avenue 0.02213 0.02174 TED 16
14 MNeue Str. Wirginia Avenue 0.02457 0.02426 00 22 57
15 Weathahnhof Fennaylvania Rallroad 0.02531 0.02635 200 E]
16 Miinchener Str. St. James Place 0.027T03 002680 as0 25
17 Gemeinschaftafeld Community Chest 0.02306 0.02206
18 Wiener Str. Tennessee Avenue 0.02821 0.02821 a0 a7
19 Berliner Str. New York Avenue 0.02794 0.02812 1000 28 80
20 Frel parken Free Parking 0.02806 0.02825
21 Theaterstr. Kentucky Avenue 0.02594 0.02614 1050 a7
23 Ereignizfeld Chance 0.01208 0.01045
23 Museuwmsstr. Indiana Avenue 0.02549 002567 1050 a7
24 Opernplate Illinois Awvenne 0.02883 002003 1100 a3 a7
25 Nordbahnhof E & O Railroad 0.02718 0.02893 200 [
26 Lezssingatr. Atlantic Avenue 0.02540 002537 1150 20
27 Schilleratr. WVentnor Avenue 0.02521 0.02519 1150 20
28 Wasserwerk Water Works 0. 02480 0.02651 TO 2 4
20 Goethestr. Marwvin Gardens 0.02441 0.02438 1200 20 87
an Gelfingnis Go to Jail 0.09422 009457
31 Rathausplate Facific Avenue 0.02501 0.02524 1275 a3z
3z Hauptetr. Morth Carolina Awve. 0.02438 0.02472 1275 3z
33 Gemeinschaftafeld Community Chest 0.02193 002228
34 Bahnhofstr. Fennaylvania Awve. 0.02312 0.02353 1400 a3 a7
35 Haupthahnhof Short Line Railroad 0.02243 0.02201 200 E] 21
36 Ereignizfeld Chance 0.00934 000816
s Parkstr. Park Place 0.02023 0.02060 1500 ERS
38 Zusatzstener Luxury Tax 0.02023 0.02052
30 SchloBalles Boardwalk 0. 02457 0.02483 2000 50 81

Table 16.3.

to a monopoly, with hotels for regular properties and a roll of 7 for the utilities. The

Sojourn probabilities and rents in Monopoly. The maximum rents relate

total expectations are given to the right of the last property of each group.

that appertain to each square. The player can thus perhaps purchase two
properties or have to pay rent twice. For this reason, one constructs a
Markov chain in which a transition represents the effect of a single throw.
Any intermediate stops on a Chance or Community Chest square do not
have to be explicitly accounted for. Thus if the player draws a card such as
“Take a walk on the Boardwalk,” the transfer to that square can be viewed
as a transition in conjunction with the actual dice throw, without changing
the rent expectations.

If a transition within a Markov chain always comprises exactly the ef-
fect of a single roll of the dice, then the current state must contain the
information necessary for the next move to be taken according to the rules
of the game. Thus in addition to the current location, a state should tell
whether this square was reached by doubles, or indeed two sets of doubles,
having been thrown. Thus each square corresponds to three states: reached
without doubles, reached on one throw of doubles, reached on two throws
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of doubles. There are also three states associated with “in Jail.” since one
has three chances to roll out of Jail with doubles.?

Strictly speaking, the states that we have described need to be further
subdivided. The reason for this is the several “transfer” cards among the
Chance and Community Chest cards that require the game piece to move
to a particular location. If any of these have already been removed from the
deck, then the transition probabilities for the affected squares are slightly
altered. However, without introducing too large an error, we may assume
that cards are always drawn from a complete, well-shuffled deck.

In order to calculate the sojourn probabilities for the individual squares,
we must investigate a Markov chain with 3 x 40 = 120 states, which would
be a hopeless enterprise without a computer. The probabilities of the state
transitions depend on the probabilities of the various dice rolls and the
special cases such as rolling doubles and the instructions of the transfer
cards (see Note 3 at the end of the chapter). The natural division of a
transition into the actual dice roll and the subsequent transfer are best
folded into the calculations. To accelerate the iteration, one may start
with a probability distribution that approximates the expected outcome,
for example, 3/42 for Jail, and 1/42 for each of the other squares. The
resulting probabilities for the individual squares are collected in Table 16.3.
Since the composition of the Chance and Community Chest cards differs in
different versions of the game, we offer two variants, one from the German
edition, the other from the American.®

The sojourn probabilities for the various squares exhibit a rather large
range. In the “street-name” properties in the American edition, they range

4Since one can collect rent while one is in Jail, but is safe from having to pay any, in
the end phase of the game it is worthwhile to remain in Jail as long as possible. Thus
one should not immediately purchase one’s freedom.

5The results for the American edition have been published in several venues: Robert
B. Ash, Richard L. Bishop, Monopoly as a Markov process, Mathematics Magazine 45,
1972, pp. 26—29. Bishop compares, among other things, how the two Jail strategies—
remain as long as possible or get out at once—affect a player’s finances. An extensive
version of this article has appeared in which minor errors in the journal article have been
corrected. Irvin R. Hentzel, How to win at Monopoly, Saturday Review of Sciences April
1973, pp. 44-48. Dr. Crypton, How to win at Monopoly, Science Digest September 1985,
pp. 66-71. Hentzel's results also appear in the book by Maxine Brady cited earlier. The
probabilities for the individual squares are given in the book by Orbanes cited earlier.

It is reasonable to consider the probabilities of three doubles in a row as approximately
equal for each square, with the exception of Jail. This corresponds to a Markov chain of
42 states, whose results are only slightly imprecise. See Steve Abott, Matt Richey, Take
a walk on the Boardwalk, The College Mathematical Journal 28, 1997, pp. 162-171.
Even greater simplifications are made by Ian Stewart in his two articles, How fair is
Monopoly? Scientific American 274, 1996, pp. 86-87; Monopoly revisted, Seientific
American 275, 1996, pp. 92-95; see also Feedback, Scientific American 277, 1997,
p. 104.
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from 0.02060 for Park Place to 0.02993 for Illinois Avenue, which represents
a relative difference of 45%. A hotel on Illinois Avenue thus has a higher
rent expectation than a hotel on Park Place, namely, 656 German marks
versus 607 marks. In general, the squares between Jail and the “Go to Jail”
square have a relatively high sojourn probability. There are particularly
high probabilities for squares that can be reached from Jail by a throw of
doubles or one of the more likely dice throws. In the special case of Illinois
Avenue, which is 14 squares beyond Jail and therefore frequently reached
in two turns from Jail, there is also the Chance card that advances the
player to Illinois Avenue.

How are the calculated rent expectations to be interpreted? How can
they be used to optimize decsions such as whether to buy, sell, or build on
a property? Of course, due to the complexity of the game as played with
a number of players, and given the goal of the financial ruin of one’s oppo-
nents, we can make only general statements. In this we must distinguish
the benefits that accrue from an investment in a property according to the
phase of the game:

e in the early phases, when the first houses are being built, the amount
of capital available to the players is generally small. A high priority of
each player is to maintain a degree of liquidity. A potential investment
must be weighed in light of how the long-term rent expectation can
be maximized given the present budget and the amount of capital
expected to be available in the near term. For example, building a
house is evaluated according to its expected return, that is, according
to how quickly the expected receipts of rent will amortize the building
costs.

e in the later stages of the game, when more money is in play, it is
of greater urgency to try to ruin one’s opponents financially. One-
time costs, such as those paid to the bank for the construction of
houses, are of small significance compared to the continual receipt of
income from rent. Therefore, investment is evaluated on the basis
of projected income, that is, the absolute expectation of rents. In
particular, hotels are built whenever possible.®

Table 16.4 contains, for eight groups of properties, both the absolute
rent expectations and the percentage return for additional houses. All val-
ues relate to a single turn and therefore to 1.1869 dice throws on average.”

SAn exception is the possibility of keeping four houses on a property to limit the
number of available houses, thereby blocking an opponent from building.

"Within the Markov chain, the first throws of a turn can be localized as the transitions
that begin at the 39 states arrived at without throwing doubles or to one of the three
Jail states. These represent a portion of 0.8425 in the stationary state distribution.
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Rent Expectation: | Profit for Each Additional House:
Hotel Percent Per Turn

1st | 2nd | 3rd | 4th | 5th
Purple 17104 |14 | 4.3 51 | 5.3
Light Blue 44 [ 1.0 | 3.1 | 9.6 7.0 | 7.7
Maroon 68 10930 |87 |52 |43
Orange 95 |14 |44 [118 | 6.6 | 6.6
Red 104 1 1.2 | 3.8 [ 9.7 | 3.8 |38
Yellow 104 1 1.3 | 45 [ 94 |35 |35
Green 115 | 1.2 | 4.0 | 7.6 |29 |27
Dark Blue 96 | 1.4 | 49 (96 |34 |34

Table 16.4. The rent expectation for various property groups and the percentage

profit in building an additional house.

If one has the good fortune to be choosing among several building op-
portunities, then the ordering of profit margins in Table 16.5 might be of

use.®

The mathematical properties of Markov chains can be formu-
lated most concisely in the language of matrices. We start with
a square matrix A containing all the transition probabilities.
The ith row contains the probabilities of how the system will
develop from the ith state. In particular, the sum of the coef-
ficients of each row is 1. If the state distributions of the row
vectors are written as p, then the system of transition equations

A Brief Primer on Markov Chains

can be written

p' = pA.

8That the cited book by Maxine Brady and the article in Spielbor 4, 1983, pp. 40 ff.,
give different orderings is due principally to the fact that there, the purchase price of
the property is considered in the investment costs. Since in building a house, rights of
possession are already available, rights are sometimes auctioned off at variable prices,
and at times may be acquired strictly for strategic purposes, such as blocking another
player, we have not followed that approach here. For example, if a mortgage has to be

obtained in order to build, then those costs are to be included in the calculation.

Furthermore, Brady figures the average rent for the properties instead of the sum of
the rents in relation to the total costs. This makes the groups of two properties, namely,

purple and dark blue, seem more favorable than they really are.
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Investment Profit
Color Houses | (% per Turn)
Orange 1tob 6.2
Light Blue | 1to 5 5.7
Dark Blue | 1to 3 5.3
Yellow 1to3 5.1
Red 1to3 4.9
Maroon 1to5 4.4
Green 1to3 4.3
Red 4to 5 3.8
Yellow 4to 5 3.8
Dark Blue | 4to 5 3.4
Purple 1toh 3.3
Green 4tob 2.8

Table 16.5. Comparison of profits: where one should build first.

In further steps, the Markov chain develops to the state distri-
butions (pA)A = pA?, pA?, and so on.

An important object in the study of Markov chains is the search
for stationary state distributions, that is, distributions p with
pA = p. Stationary state distributions always exist, though
they are not always uniquely determined, as in the case of the
ruin problem. Nevertheless, if there is a certain number of steps
in which each state can be reached from every other state—such
a Markov chain is called regular—then there exists precisely one
stationary distribution, and it is the limiting distribution from
any initial distribution. The Markov chain for Monopoly is
regular, since every state can be reached from every other in
three rolls. It is not hard to bhelieve that this is so. But anyone
who doubts may compute the 120 x 120 matrix A® and check
that each entry is greater than zero.

Markov chains in which each state is reachable from every other
state in some finite number of steps are called irreducible. Ir-
reducible Markov chains are not necessarily regular, as the ex-

ample
0 1
1 0

demonstrates: the first state can be reached only in an even
number of steps, while the second can he reached only in an
odd number. The period of a state is defined to be the greatest
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common divisor of all numbers of steps in which one can leave
the state and then return to it. In the case of irreducible Markov
chains, the periods of all states are equal. If they are equal to
1, then the Markov chain is regular.

A state of a Markov chain is said to be absorbing if it cannot be
exited. An example is the last square in the snakes and ladders
game. If a Markov chain has at least one absorbing state that
can eventually be reached from every nonabsorbing state, then
the entire Markov chain is said to be absorbing. For exam-
ple, the ruin problem can be modeled as an absorbing Markov
chain whose two ruination states are absorbing. If one lists the
absorbing states first, then the transition matrix assumes the
following block form, where [ is the identity matrix:

I 0
A= ( ! Q) |
One obtains information about the long-term behavior of an

absorbing Markov chain by multiplying the block form of the
matrix A repeatedly by itself:

A I 0 I 0
“\I+Q+-+@ YR @) T\U-Q'R 0)

In particular, using the limiting value of A™, which in the ruin
problem we obtained by other means, one can determine which
absorbing states will be reached from a particular start state
with what probabilities. How long this will take on average can
be determined from the matrix (I — @Q)~!. If ¢ is the column
vector whose coordinates equal the expected number of steps
until an absorbing state is reached, then just as in the ruin
problem, one obtains the equality

1
(=Q0+|:
1
which can be transformed into
1
(=(I-Q) '+ |:
1
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Chapter Notes

1. Since p 4+ g = 1, we first obtain
q(r(k — 1) — r(k)) = p(r(k) — r(k + 1)),

so that one may calculate the difference of two successive ruin probabilities
recursively from r(n — 1) —r(n) = r(n —1):

rlk—1) —r(k) = s" "r(n —1).

If one now replaces k by k+1,k+2,...,n and then adds both sides of the
corresponding equations, one obtains

r(k) = r(n) = (1+3+32+---+3" . l)'r{ﬂ,—l}.

Since r(n) = 1 and r(0) = 0, one obtains the given formula, which can be
simplified by distinguishing two cases:

n—k ifs=1,
r(k) = {_ )

— if s # 0.

2. For p # ¢, the equations of the system can be transformed to yield
) 1 ' 1
fk—1)— kK —I——:s(!.’k —fk+1 —|——).
( ) — £(k) T—p (k) = ) -

As in the case of the ruin probabilities, the values £(1),...,#(n —2) can be
calculated from #(n — 1). Using the equation

pl(l)=glln-1)=n—-1,

which is obtained by summing all the equations, one finally obtains the
formula given in the sidebar. The special case p # g can be solved by
taking limits, say, by using L'Hopital’s rule twice.

3. The transfer cards are different for the different German editions. For the
American edition they are as follows: there are Community Chest cards
sending the player to Go and to Jail, and Chance cards that transfer the
player to Go, Jail, Reading Railroad, St. Charles Place, Illinois Avenue,
Boardwalk, the next railroad (2x ), the next utility, and three squares back-
ward.

Further Literature on Markov Chains

[1] John T. Baldwin, On Markov chains in elementary mathematics courses,
American Mathematical Monthly 96, 1989, pp. 147-153.

[2] J.G. Kemeny, J.L. Snell, Finite Markov Chains, New York 1960.
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Blackjack: A Las Vegas Fairy Tale

In gambling casinos, blackjack is considered the game with the best odds. [t
is even maintained that there exist strategies that make it possible for the
player to beat the house. Is that possible?

The goal of blackjack is to draw cards until one has as high a sum of card
points as possible that does not exceed 21. If 21 points are achieved with
only two cards, then one has obtained a blackjack. This combination, of
ace and either a 10 or a picture card, trumps any other combination of
21 points. In American casinos, in which blackjack has been played since
1920, the game enjoys an enormous popularity. Blackjack is offered in most
European casinos as well.

In casinos, blackjack is a game played against the bank. That is, one
plays against a casino employee, the dealer. In general, up to seven players
can attempt simultaneously to draw a combination that beats the bank.
Here is how the game is played: first, each player places a bet within a set
limit. In the game itself, the dealer draws cards from a deck and turns them
over: first one card for each player, then one for the dealer, and then again
one for each player.! The players can ask for further cards if they wish,
according to how they judge their own chances against those of the bank,
as indicated by the single visible card. A player who “goes bust,” that

1In American casinos it is usual that the dealer also takes a second card. This card
is provisionally hidden from the players unless the dealer has obtained a blackjack. In
comparison to the European variant, the players thereby obtain a bit more information:
if the dealer, having an uncovered 10 or ace, does not at once show his cards, then the
players know that the dealer has not obtained a blackjack.

121
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is, exceeds 21, loses at once. When no players want additional cards, the
dealer draws for the bank. The bank has no choice when to stop drawing
cards. It must draw at least to 16, and must stop upon reaching 17 or
more. If an ace is drawn, it must be counted as 11 if the result would be
in excess of 21. Once the bank has finished drawing, each player who has
not gone over 21 computes his or her score. A player whose total exceeds
that of the bank gets his bet plus the amount of his bet. If the win occurs
with a blackjack, then he gets his bet plus one and one-half times his bet.
If it is a tie, the player gets back his bet. If the bank has the better hand,
the bet is lost.

In contrast to roulette, in blackjack, the players have considerable strate-
gic influence over the course of the game in deciding whether to take ad-
ditional cards. To make the game more interesting, there are several addi-
tional rules.

e Insurance. If the bank’s first card is an ace, then the bank will win
with relatively high probability, namely, by obtaining a blackjack
with any of 4 out of the 13 card values. To protect himself against
the impending catastrophe, players can take out insurance against a
blackjack. By placing an additional bet, half the size of the original
amount, a player receives his original bet plus the supplement in the
event that the bank draws a blackjack. If there is no blackjack, the
insurance passes to the bank, while the original bet is calculated as
usual.

¢ Doubling down. If the first two cards yield the sum of 9, 10, or 11
points, where an ace if present can be counted as 1, then the player is
permitted to double his bet, with the proviso that he can draw only
one more card.

e Splitting. If the first two cards have the same value, the player can
break his hand in two, where an additional bet must be placed for
the new hand. That is, the player draws independently for the two
hands. However, a blackjack is counted only as a normal 21, and
only one further card may be dealt to a split ace. Moreover, in many
casinos, multiple splitting or doubling after splitting is not permitted.

The way the cards are dealt is of great importance. The deck is not
reshuffled for each game, but instead, a number of decks, usually six, of 52
cards each are shuffled together and about one-fifth of the pack is divided
off by a blank card. The game is played with this stack until the blank
card is encountered. After the end of the game in which that card appears,
the pack is reshuffled.
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Blackjack is practically symmetric for the players and the bank, and is
therefore more or less a fair game. Furthermore, the asymmetric aspects
of blackjack tend to favor the player, which explains the popularity of the
game:

e the player wins one and one-half times the original bet in the case of
a blackjack.

e the bank must follow a prescribed course in dealing itself cards.
e the player knows the bank’s first card.

e the bank is permitted neither to split nor to double.

The only, at first almost unnoticeable but therefore the more important,
advantage to the bank is that the bank wins whenever a player goes bust,
even if the bank also goes bust. It would seem, then, that a player should
play more defensively than the bank. A good strategy should be oriented
to the bank’s first card, since it contains significant information about the
course that the bank’s hand will likely take.

A mathematical analysis of blackjack should begin with the bank, whose
results can be determined in the form of a probability distribution. In
the simplest case, one assumes that the probabilities for the individual
card values are a constant 1/13, except for the cards of value 10, whose
probability is 4/13. Such a supposition is of course true only for a stack of
cards of infinite size, since the probabilities change as the cards are dealt
out. However, the supposition will do for developing a fixed strategy that
will approximate the optimal strategy on average.

Although it can happen that the bank will have to draw 12 cards,
namely, six aces, a 6, and then five aces, the number is usually much
smaller, seldom more than four. One can model the progression of cards
drawn as a Markov chain, where the states correspond to the intermediate
results. In addition to the special case of a blackjack, it is also necessary
to consider soft hands, which are hands with an ace counted as 11, which
can be viewed as a special case. Table 17.1 shows the end distribution for
the bank.

It can be seen at once the great risk that the bank is taking, since in
more than one in every four hands it draws over 21 points. The results
of this table suffice for calculating the odds of a player who copies the
bank’s strategy: if a player plays like the bank, without ever splitting or
doubling, until at least 17 is reached, then that player’'s probabilities are
the same as those in the table. If the rules for winning were the same for
the bank as for the player, then the player’s expectation would be 0: to
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Result Probability
17 0.1451
18 0.1395
19 0.1335
20 0.1803
21 0.0727
blackjack | 0.0473
bust 0.2816

Table 17.1. Probabilities for the bank in blackjack.

Situation | Advantage | Probability | Expectation
Player has blackjack, 0.5 0.0451 0.0225
bank does not

Both player and bank —1.0 0.0793 —0.0793
go bust

Table 17.2. Asymmetries in winning and their effects when the player copies the
bank’s strategy.

break even. However, since the winning rules are somewhat different, some
small correction needs to be made, and these are tabulated in Table 17.2,
showing that in sum, the player who follows the bank’s strategy has an
average loss of 5.68% of the amount bet.

We have already mentioned that it hardly makes sense to copy the
bank’s strategy. In particular, in deciding how to play, a player should have
a look at the bank’s first card. In order to calculate his win expectation, the
player should next determine the probability distributions that arise for the
bank conditioned on that first card. This can best be done by calculating
these conditional probabilities iteratively for arbitrary intermediate states.
Only a single iteration is necessary, one that is realizable with a spreadsheet
calculation.? The results are presented in Table 17.3.

The second step consists in investigating the player’s profit and loss
expectation if he decides not to draw upon reaching a certain number of
points. Again, the probabilities are conditioned on the bank’s first card.
The random variables can assume only the values —1, 0, 1, and 3/2, corre-
sponding to what the player can win, where their probability distribution
comes directly from Table 17.3. This leads to the winning expectations
tabulated in Table 17.4.

21f one places the special cases such as blackjack, soft hand, double, and split hands
cleverly into the table, one can actually fairly easily incorporate the entire blackjack
calculation presented here in a single spreadsheet.
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Bank

Player 2 3 4 5 G T k] o in Ace
17 .13098 0.1350 0.1305 0.1223 0.1654 0.3686 0. 1286 0.1200 0.1114 0.1308

18 0.1349 0.1305 0.1259 0.1223 0.1063 0.1378 0.3503 0.1200 0.1114 0.1308

19 0.1297 0.1256 0.1214 0.1177 0.1063 00786 0. 1286 0.3508 0.1114 0.1308

20 .1240 0.1203 0.1165 0.1131 0.1017 00786 0. 0694 0.1200 0.3422 0.1308

21 0.1180 0.114a7 01112 0.1082 0.0972 00741 0. 0604 0.0608 0. 0345 0.0539

Bl . 0000 00000 0.0000 00000 0.0000 OO0 . 0000 0.0000 0. 0769 0.3077
Bust 0.3536 0.3739 0.3945 04164 0.4232 0.2623 0.2447 0.2284 0.2121 0.1153

Table 17.3. Probabilities for the bank's results conditioned on the bank’s first card.

Bank
Player b 3 4 i [+] T & a i0 Ace
EJ L5000 1.5000 1.5000 1.5000 1 L5000 1.5000 1.5000 1.3846 1.0385
21 0.8%20 0.8853 0.888B8 0.8018 0 L0250 00306 0.8302 08117 03307
20 06400 0.6503 0.6610 06704 0 TT3Z 0 0.TO1E 0.THER4 0.4350 0.1461
19 0.3863 0.4044  0.4232  0.43935 0. 4960 SG160 0 0.5030 0.2876 —0.0187 —0.1155
0. V]
—0. V]
—0. V]

is 0.121%  0.1483 0.1759 1996 .2834 0.3006 01060 —0.1832 —0.2415 —0.3771
17| -0.1530 —0.1172 —0.0806 0449 L0117 —0.1068 —0.3820 —0.4232 —0.4644 —0.6386
< 16| —0.2028 —0.2523 —0.2111 1672 —0.1537 —0.4754 —0.5105 —0.5431 —0.5758 —0.7604

Table 17.4. Expectations, conditioned on the bank’s first card, for the player's winnings
(minus the amount bet), when the player takes no more cards.

With the aid of Table 17.4, a player can estimate his chances when
he must decide whether to draw another card. The drawing strategy is
optimized in the reverse direction of the chronological order of play; that
is, one begins with the high-valued hands and then optimizes the strategy
recursively step by step. The already optimized expectations then enter
the calculation when the expectation of drawing to a lower-valued hand is
calculated. This is compared to the expectation from not drawing a card.
The higher of the two values is the maximum achievable expectation: the
horizontal lines in Table 17.5 indicate the limits on drawing: in the upper
region, that is, for the situations in which one does not draw, the winning
expectations are the same as those in Table 17.4.

An examination of Table 17.5 shows that the player must play relatively
defensively:

e against the bank’s 4, 5, or 6, the player should draw only to 11; that
is, he should draw only as long as drawing poses absolutely no risk.

e against the bank’s 2 or 3, the player should pass at 13 and above.
e against higher cards, from 7 to ace, the player should draw to 17.

This optimal defensive strategy becomes plausible when one considers
that if the bank starts with 6, it will frequently draw to 16 and then go
bust. One can see the details in Table 17.3, where the conditional bank
distributions are given.

Soft hands, that is, hands containing an ace valued at 11, must be
investigated separately. Clearly, such hands provide greater flexibility in
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Bank

Player 2 3 4 5 5] 7 8 9 10 Ace
19 0. 3863 0.4044 0.4232 0.4395 0. 4960 0.6160 0.5939 L2876 —0.018T7 —0.1155
18 0.1217 0.1483 017509 0.1996 0.2834 0.3994 0.1060 —0.1832 —0.2415 —0.3771
17| —0.1530 —0.1172 —0.0806 —0.0449 0.0117T —0.1068 —0.3820 —0.4232 —0.4644 —0.6386
16| —0.20628 —0.2523 —0.2111 —0.1672 —0.1537| —0.4148 —0.4584 —0.5083 —0.5752 —0.6657
15] —0.20628 —0.2523 —0.2111 —0.1672 —0.1537| —0.3608 —0.4168 —0.4716 —0.5425 —0.6400
14] —0.20628 —0.2523 —0.2111 —0.1672 —0.1537|-0.3213 —0.371% —0.4309 —0.5074 —0.6123
13| —0.20628 —0.2523 —0.2111 —0.1672 —0.1537| —-0.2601 —0.3236 —0.38T72 —0.4695 —0.5825
—0.2534 —0.2337|—-0.2111 —0.167T2 —0.1537| —0.2128 —0.27T16 —0.3400 —0.4287 —0.5504

11 0.2384 0.2603 0.2830 0.3073 0.3337 0.2021 0.2300 0.1583 0.0334 —0.208T7

ol

Table 17.5. Expectations, conditioned on the bank’s first card, for the player’s winnings
{minus the amount bet), when the player draws optimally.

Banle
Player 2 3 4 5 [ T ] o 10 Ace
19s 03863 0.4044 04232 0.4395 0.4960 O.GlE0 0.5930 O.2876  —0.0187 —0.1155
18 0.1217 0.1483 01750 0.10606 0.2834 0.3996 0.1060 [ —0.1007 —0.2087 —-0D.3720
1Te | —0.0005 0.0200 00593 00812 0.1281 0.0538 —0.0729 —0.1498 —0.2586 —0.4320
1Ge | —0.0210 0.00891 0.0400 00734 0.0988 —0.0049 —0.06G68 —0.1486 —0.2684 —0.4224
15z | —0.0001 0.0282 0.0593 0.0820 0.1182 0.037T0 —0.0271 —0.1122 —0.2373 -—-0.3977
14s 00224 0.0508 0.0801 0.11159 0.1362 0.0795 0.0133 —0.0752 —0.2057 -—-0.3727
13= 00466 00741 01025 0.1344  0.1617 0.1224 00541 —0.0377 —0.1737 —0.3474
12z 00818 0.1035 01266 0.1565 01860 0.1655 00951 0G.0001 —0.1415 —-0.3219

Table 17.6. Expectations, conditioned on the bank's first card, for the player’s winnings
{minus the amount bet), when the player draws optimally from a soft hand.

deciding whether to draw another card, since one cannot go bust from the
next card. Table 17.6 contains the relevant data for soft hands. Since
additional cards can turn a soft hand into a normal hand, the table is in
part identical to the previous table.

Continuing in reverse chronological order, one can calculate the expec-
tations for hands down to 10 points. For hands that have other special
features such as those consisting of a pair of like-valued cards or a single
card, these values constitute only a lower bound for the winning expecta-
tions (see Table 17.7).

If we now consider the possibility of splitting or doubling, we finally ob-
tain by the same methods the associated total expectation, which indicates
an average loss of 2.42%. In addition, in an intermediate step not shown,
it is necessary to determine the expectations of hands containing a single
card; however, without doubling and splitting, it suffices to consider only
10 and ace separately (see Table 17.8).

The loss of about 2.42% is greater than that in roulette when one bets
on a color or makes some other simple wager. However, the average loss
at blackjack can be further reduced if one splits and doubles. We begin
with an optimization of doubling. Again, there are two win expectations
to compare: with and without doubling. Without doubling, we have the
tabulated expectations for hands of 9, 10, and 11, as well as the soft hands
19s and 20s. With doubling, we need to determine the expectation when
these hands draw exactly one card, and this value is then multiplied by 2.
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Bank

Player 2 3 4 5 [ T ] o 10k Ace
10 0.1825 0.2061 0.2035 0.2563 0.2878 02560 0. 1980 01165 —0.0536 -—-0.2513
o 0.0744 0.1013 0.1290 0.1580 0.1960 0171 00984 —0.0522 —0.2181 -—0.3532
8| —0.0218 0.0080 0.0388 0.0708 0.1150 0.0822 —0.0599 —0.2102 —-0.3071
Tl—0.1082 —0.0766 —0.0430 —0.0073 0.0202 —0.0688 —0.2106 —0.2854 —-0.3714
6| —0.1408 —0.1073 —0.0729 —0.0349 —0.0130 —0.1519 —0.2172 —{0.2026 —0.3887
5 —0.1282 —0.0953 —0.0615 —0.0240 —-0.0012 —0.1194 —0.1881 —{0.2666 —0.3662
4| —0.1149 —0.0826 —0.0494 —0.0124 0.0111 —0.0883 —0.1593 —0.2407 -—0.3439

Table 17.7. Expectations, conditioned on the bank’s first card, for the player’s winnings

(minus the amount bet), when the player plays optimally.

Bank | 2 3 4 5 G T 8 ] 10 Ace |  Total
Ex|)¢.-ctal.iou|0.0l.‘ﬂ}d 00838 (.1221 0.1530 01827 0.1215 0.0440 —0.0477T —0.1779 —0.3389|—0.0342
Table 17.8. Expectations, conditioned on the bank’s first card and absolute, for
the player's winnings (minus the amount bet), when the player plays optimally (without
doubling or splitting).

Doubling should then be done in those situations that lie above the line in
Table 17.9, since it is those for which the tabulated expectation exceeds the
ordinary expectation, namely, that obtained by normal drawing. However,
this does not hold for soft hands, which with normal drawing always have
a greater expectation than that afforded by doubling.

It remains to optimize the splitting strategy. That is, for the case of
two like-valued initial cards, we must determine under what conditions it
is advantageous to split the hand. Since splitting rules vary from house to
house, we are forced to consider several variants:

e after a split, the player may neither double nor split.

e splitting may be done several times, but split hands may not later be
doubled.

e split hands may be doubled and further split.

Clearly, the last of these cases is the most liberal for the player, since
it offers the greatest number of options. And in fact, it will turn out that
there are cases in which splitting is advantageous only if the hand can be
later doubled. On the other hand, the first two cases differ only in the win
expectations, not in the optimal strategy. That is, if it is advantageous to
split, then it remains so if later the same option is available.

The actual calculation proceeds in three phases, starting with results
already obtained. First, the winning expectation is calculated for each pair
of cards and each bank card for the case of splitting. Depending on the rule
in force, it may be necessary to consider the case in which the next card can
also be split or the case in which doubling is permitted. Then these results
are compared with the win expectations for the optimal drawing strategy.
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Eank
Player 2 3 4 5 (] T k] 9 10 Ace
11 04706  0.5178 05660 0.6147 D.66T4 0.4620 0.3507 0.2278 0.0120 —0.5399
10 | 0.3589 0.4093 0.4608 0.5125 0.5756 0.3924 0. 2866 01443 —0.1618 —0.6251
o | 00622 | 0.1208 01819 0.2431 0.3171 [0.1043 —0. 0264 —0.3010 —0.5847 —0.9151

Table 17.9. Expectations, conditioned on the bank’s first card, for the player’s winnings
{minus the amount bet), when the player draws exactly one more card.

Bank | 2 3 4 5 [ 7 8 0 10 Ace | Total

Only once |0.0801 0.1200 0.1620 0.188d4 0.2232 0.1418 0.0674 —0.0400 —0.1770 —0.3380 | —0.00882
Repeated [0.0903 0.1214 0.1543 0.1900 0.2252 0.1438 0.0588 —0.0390 —0.1763 —0.3380 | —0.00772
Unreatricted | 0.0918 0.1240 0.1576 0.1938 0.2205 0.1451 0.0502 —0.0397 —0.1763 —0.3380 | —0.00630

Table 17.10. Player's expectation (minus the amount bet), for optimal play, depending
on the splitting rule in force.

This yields the optimal splitting strategy. If one then wishes to calculate
the total win expectation (see Table 17.10), then that is best done by way
of the intermediate steps of hands consisting of a single card.

The optimal splitting strategy can be read from Table 17.11. The let-
ter “S” indicates that splitting is advantageous, while “(S)” means that
splitting is advantageous only if the next card is permitted to be doubled.

Depending on the variant of the rules, then, the average loss at blackjack
can be brought down to the range 0.64% to 0.88% of the initial wager.
This is much less than the 2.42% without splitting or doubling. Moreover,
the loss is less than that for simple bets in roulette, where the number
is 1/74 = 1.35%. However, and this is an important distinetion, unlike
roulette, blackjack offers these odds only to a skillful player. Bad play is

2 3 4 5 6 7 8 9 10 Ace
Ace, Ace | S S S S S S S § S

10, 10

9,9] S S S 5 S S S

8, 8] S S S 5 S § § 8§

7,71 S S S S S S

6,6|(S) S S S S

5.5

14 s) ()

3,31(S) (89 S S S S

2,21(S) (8) S S S S

Table 17.11. When splitting is advantageous.
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costly, and that includes insurance against blackjack, which is never good
strategy. And even that obviously unfavorable option is observed over and
over again in casinos.

The first extensive mathematical analysis of blackjack was carried out
in 1956 by the Americans R. Baldwin, W. Cantey, H. Maisel, and J. Mc-
Dermott.> They investigated the version of the game then current in the
United States, which differs from that discussed here in a few details. These
researchers came up with an average loss of 0.6%. Their optimal strategy
was much more defensive than that previously extolled by gaming experts.
In their publication, they refer, for example, to a recommendation of Cul-
bertson and others to draw up to 13 or 15, according to whether or not the
bank’s card is in the range from 2 to 6.

Baldwin and his colleagues began, as we did, with the assumption of
constant probabilities for the individual card values, namely, 1/13 and 4,/13.
They did not consider the information available to the player about the
cards already played from the deck. We may ask, then, whether that
knowledge could significantly increase the player’s winning expectation. It
was just this idea that motivated the young mathematician Edward Thorp
after he read Baldwin’s work. In fact, Thorp discovered certain situations,
for example, when all 5s have been played, that are extremely advantageous
to the player who follows a particular strategy. Indeed, the player can
expect about a 3.3% profit. Since in those days, the game was played with
a single deck, such a situation obtained in about 3.5 to 10 percent of hands.
If one were to raise one’s bet in such situations, one could reverse the bank’s
advantage. In theory, the bank could be beaten.

What happened then is something that occurs seldom in the world
of mathematics: after Thorp made his results known at a meeting of
the American Mathematical Society? a media frenzy ensued,® whose echo
reached across the ocean to Europe. Of course, the mathematical theorem
had to be put to the test at the casino. Thorp made a killing on his best-
selling book, which sold over 500,000 copies to those who wanted to profit
from his discoveries.® There, strategies were described that with much
practice could give the player a significant advantage over the bank. The
basic idea, which turns out to be a usable strategy in practice, is to use a

3R. Baldwin, W. Cantey, H. Maisel und J. Mc Dermott, The optimum strategy in
blackjack, Journal of the American Statistical Association 51, 1956, pp. 429-439.

4E. Thorp, A favorable strategy for twenty-one, Proceedings of the National Academy
of Sciences of the USA 47, 1961, pp. 110-112.

SE. Thorp, A prof beats the gamblers, The Atlantic Monthly June 1962, pp. 41-45;
How to beat the game, Scientific American 1961/4, p. 84; P. O. Niel, A professor who
breaks the bank, Life April 20, 1964, pp. 66-72; 1744, Formel des Gliicks, Der Spiegel
18, 1964, pp. 127-131.

SE. Thorp, Beat the Dealer, New York 1962 (revised edition, 1966).
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counting system to come up with an approximate, but sufficient, overview
of the cards yet to be played.” The method associates a weight with each
card value, which for Thorp’s high-low system is

e +1 for 2 through 6;
e —1 for 10, face cards, and ace;

e () for the remainder.

After the cards are shuffled, one begins to add the values of all cards
played. Depending on the total weight, generally called the count, and the
number of cards remaining, one can vary one’s strategy advantageously.

Blackjack is the first and only casino game to be “broken.” And today?
Blackjack continues to be played in casinos. Thanks to Thorp and other
blackjack experts, as well as an inexhaustible supply of publications on
the subject,® blackjack is more popular than ever. There are two reasons
that the casino owners are not too worried about losses at the blackjack
tables: first of all, blackjack is now played with several, usually six, decks
of cards, from which about 80 cards are exempted by means of the blank
card. Thus great imbalances among the various card values are to a large
extent avoided. Second, counting strategies require a significant investment
in practice and concentration, and indeed, each incorrect decision in the
course of the rapid play goes against the player. Only those who continually
count correctly and adapt their strategies accordingly can hope to turn
their tiny advantage against the bank to account. Successful card counters
are easily lost in the sea of other average players using an optimal strategy.
That the minimal advantage is only an expectation and can come to nothing
due to simple bad luck need hardly be mentioned.

We shall demonstrate, using the high-low system, how counting sys-
tems can be derived. We start with a blackjack calculation that must be
generalized from what we have calculated thus far. The assumed equal
distribution of the individual card values will be replaced with an arbi-
trary probability distribution. We shall still not take into account that
the probabilities change in the course of the game; the error thus involved
can be corrected later. What we require first is a sensitivity analysis; that
is, we investigate how greatly the results change if the card probabilities
are slightly increased or decreased. This is particularly quick and easy us-
ing a spreadsheet calculation for the case of a blackjack. Corresponding

7If the use of a computer was allowed in casinos, then one could simply input the
values of the cards played. Indeed, the results of a spreadsheet calculation would suffice
to present the current expectation as well as the associated strategy.

8See the list of literature at the end of the chapter.
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Bank | 2 3 4 5 [ ki 2 o9 10 Ace
+ Expectation | 0.0036 0.0044 00057 0.0073 0.0043 0.0027 —0.0002 -0.0018 —0.004d —0.0059

Table 17.12. Change in winning expectation when one card is removed from a 52-card
deck.

to a change in probability from 4/52 to 3/51, which results from the re-
moval of the first card of a single complete 52-card deck, one obtains the
changes in winning expectations (for a single permitted splitting) shown in
Table 17.12.

The changes indicated, for which the strategy will have to be altered in
some cases, are of the same order of magnitude as the expectation of loss
from using the optimal fixed strategy. That is, in the style of play, today
out of fashion, of a single deck, a player can quickly, namely, after only two
cards have been played, find him- or herself in an advantageous position.
And as play progresses, the winning expectation fluctuates dynamically up
and down. If the game is played with six decks, then the effect of individual
cards is much smaller, only about one-sixth of the tabulated values at the
start of the game.

The table also shows that the play of card values 2 through 6 is positive
for the player, while for the other cards, particularly the 10 and ace, the
opposite is true. The high-low counting system reflects this situation ex-
actly. Therefore, the high—low system is well suited for characterizing the
changing winning expectation. For example, if a single card with count 1 is
removed from the deck, then there are five equiprobable cases for the card
value, namely, the cards 2 through 6. If one averages the results of these
cases, one obtains an expectation improved by 0.0051.

One proceeds analogously to optimize the strategy based on the cur-
rent count. First, the supposed composition of the remaining cards is
determined; that is, conditioned on the current count €' and the number
n of remaining cards, the conditional probabilities of the individual card
values in the rest of the deck are determined. Since the cards 7, 8, and 9
have no influence on the high-low count, their conditional probabilities are
equal to 1/13 regardless of the count. On the other hand, the probabilities
Phign and Py, for the low (2 through 6) and high (10, picture, ace) cards
depend on the count. One has the equality

C
Plow - Phigh i
n
Together with the identity
10

Plow + Phigh - ﬁ.‘
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we can determine the probabilities Py and Py, at once. Moreover, on
the basis of the count, no distinction can be made within the high and low
card values. Thus, the probabilities conditioned on the relative count C'/n
for the individual card values are as follows:

: c
P2)=---=P(6) = % " Ton
P(l[]) — . — P(ACE) = 13 - %"

P(T) = P(8) = PO) = 7.

With these conditional probabilities, assumed constant throughout the
game, the strategy can be optimized depending on the quotient C'/n.
The results are summarized in “Optimal Strategy Based on the High-Low
Count.” The winning expectation from such a strategy depends on various
factors, namely,

e the relation between the lowest and highest wagers,
e the number of decks of cards used,
e the number of cards removed from play after the cards are shuffled,

e the number of players; with more players, more cards will be played
on average after the blank card is encountered.

How high the expectation grows in a given case can be determined with
a Monte Carlo simulation that takes into account the special conditions.
One can use it to test the efficacy of simplified strategies, such as deter-
mining whether to draw a card based on the high-low count.

Optimal Strategy Based on the High—Low Count

On the basis of the current high—low count C' and the number
n of cards remaining, one plays as follows:

Bet. When 100C/n > 3.6, one raises one's bet; otherwise, the
bet is kept to the minimum.

Drawing. Draw at “D” or when 100C/n is less than or equal
to the given value:
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Bank 2 3 4 5 G 7 g 9 10 11
19
18
17 —44.2 —40.2 —43.3 —12.0

16| —18.3 —20.4 —22.5 —24.9 —-27.3 14.7 12.0 8.6 0.1 16.8
15)—-11.9 —14.0 —16.1 —18.3 —19.8 183 179 153 82 188

14 —7.9 —10.3 —12.6 —15.1 —16.2 34.0 388 D D 269
13 -2.0 —48 —-74 —10.1 —10.5 D D D D 387
12 5.8 25 —-0.4 -—-33 25 D D D D D
11 D D D D D D D D D D

Draw at “D” or when 100C/n is less than or equal to the
given value:

Bank| 2 3 4 5 6 7 8 9 10 11
19s
18s(—20.4 —20.5 —30.1 —-30.56 —35.9 —20.T D D 2.7

17s D D D D DD DD D D

Double. Double when 100C/n is greater than or equal to the
given value:

7 8 9 10 11
—1%1 —14.8 —-959 59
—12.6 —95.0 -34

6.6 14.5

Bank | 2 3 4 5
11| —23.3 —25.1 —26.7 —28.2 —3l.
10| —17.5 —19.5 —21.3 —22.8 —26.
9 1.8 -2.2 -56 -85 —12.

o

—

o

Split. Split on “S” or when 100C/n is greater than or equal
to the given value. The following table does not allow for
split hands to be doubled:

Bank 2 3 4 5 6 7 =] 9 10 11
11, 11| —22.2 —23.4 —245 —25.6 —27.7 —182 —16.0 —14.6 —11.8
10, 10| 20.0 15.9 12.4 9.4 5.4 250 386
-29 —-56 78 -10.1 —-10.7 121 —-15.6 —18.7

3 3 3 3 3 3 5 3
—16.8 —20.2 —23.3 —24.9 —35.5 5

36 —-2.0 —-64 —-10.3 —14.9

w

oI N®®
o -1 0w

4 6.6 24.6 157 340
3,03 148 6.3 0.0 —-53 —18.9 5
2,2 126 50 —-1.9 —87 —20.4 5 389

R s
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Further Literature on Blackjack

The first six items are directed primarily at blackjack players, the remainder to
the more mathematically sophisticated reader.

[1] Michael Riisenberg, Andreas Hohlfeld, Geplantes Gliick, Bild der Wissenschaft
10 1985, pp. 60-71.

Michael Riisenberg, Andreas Hohlfeld, Black Jack, Diisseldorf 1985.
Konrad Kelbratowski, Black Jack, Niedernhausen 1984.
Bernd Katzenstein, Black Jack, Capital 1982/3, pp. 264-271.

Virginia Graham, Ionescu Tulcea, A Book on Casino Gambling, New York
1978.

[6] Charles Cordonnier, Black Jack, Munich 1985.

[7] R.A. Epstein, The Theory of Gambling and Statistical Logic, New York, 1967
(second edition 1977).

[8] Edward Thorp, Optimal gambling systems for favorable games, Revue de
linstitut international de statistique/Review of the International Statistical
Institute 37, 1969, pp. 273-293.

[9] Edward Thorp, William Walden, The fundamental theorem of card counting
with applications to trente-et-quarante and baccarat, International Journal
of Game Theory 2, 1973, pp. 109-119.

[10] Edward Thorp, The Mathematics of Gambling, Hollywood 1984, pp. 11-28.

[11] Ulrich Abel, Black Jack mit der Fiinf-Karten-Regel, Der Mathematikunter-
richt 28, 1982, pp. 62-73.

[12] Martin Millman, A statistical analysis of casino blackjack, American Mathe-
matical Monthly 90, 1983, pp. 431-436.

[13] Gary Gottlieb, An analytic derivation of blackjack win rates, Operations Re-
search 33, 1985, pp. 971-988.

[14] Olaf Vancura, Judy A. Cornelius, William R. Eadington (eds.), Finding the
Edge: Mathematical Analysis of Casino Games, Reno 2000, pp. 71-160.
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e7-e6, c¢7-c5, and Ng8—f6 (see

Figure 18.1). Are there two out of these four moves that are absolutely

equivalent with respect to the chances of each side winning the game?
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Do two o‘f these positinns offer identical chances?

Which Move Is Best!?
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We recall the typical sources of uncertainty for games that we
If it is our turn in a game of chess, we must consider future moves.

There is a great difference between our moves and those of our opponent:

%

//

In the game of chess, a common opening move for white is the pawn move
is, the difficulty in determining how a game should develop from a given
position lies wholly in the astronomical number of possible comhinations

of moves. Chance or hidden aspects of the game do not figure at all into

the equation.
with respect to the opponent, we must always reckon with his or her best

This question differs dramatically in kind from those that we have posed
mentioned in the introduction. Chess is a purely combinatorial game. That
move, that is, the one that is worst for us. In particular, each opponent’s

e2-e4. Among black’s replies are e7—e3,
thus far.

137

Figure IB. I .
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move that we overlook represents a danger that we have missed a move
that will be bad for us. In contrast, when it is our turn, we need only find
a good move. We do not have to consider other moves.

A move is good for us if it leads to the desired goal, that is, to a check-
mate of the opponent’s king or—if we are less ambitious—to a stalemate.
However, such long-range goals are of little help to a player in the midst of
a game, who needs criteria for the objective and immediate evaluation of a
move without regard to the opponent’s further play. To do this seems pos-
sible in chess—in contrast to roulette and the game rock—paper—scissors, in
which no move can be absolutely characterized as good or bad—since all
depends on what happens later. That is why there are no “good” players of
those games, that is, players who almost always win. On the other hand, a
chess player has practically no chance against a significantly better player.
And the same holds for chess computer programs, against which an average
player will almost never triumph.

Moves and positions in chess are generally characterized in the litera-
ture as “excellent,” “advantageous,” “somewhat better,” “equal,” “approx-
imately equal,” or “with equal prospects.” In contrast, chess programs
measure the player’s chances of victory with a single number. It seems,
then, that good moves can be calculated and quantified. Thoughts in this
direction were expressed by Edgar Allan Poe on the occasion of a presen-
tation of the famous chess automaton constructed in 1769 by Baron von
Kempelen (1734-1804). In an article in the Southern Literary Messenger,
Poe attempted to prove that this automaton was a hoax, operated by a
chess-playing Turk. After seeing the calculating machine of the English
mathematician Charles Babbage (1792-1871), Poe compared it with the
chess automaton:

Arithmetical or algebraical calculations are, from their very na-
ture, fixed and determinate. Certain data being given, certain
results necessarily and inevitably follow. These results have
dependence upon nothing, and are influenced by nothing but
the data originally given. And the question to be solved pro-
ceeds, or should proceed, to its final determination, by a suc-
cession of unerring steps liable to no change, and subject to
no modification. This being the case, we can without difficulty
conceive the possibility of so arranging a piece of mechanism,
that upon starting it in accordance with the data of the ques-
tion to be solved, it should continue its movements regularly,
progressively, and undeviatingly towards the required solution,
since these movements, however complex, are never imagined
to be otherwise than finite and determinate. But the case is
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widely different with the Chess-Player. With him there is no
determinate progression. No one move in chess necessarily fol-
lows upon any one other. From no particular disposition of the
men at one period of a game can we predicate their disposition
at a different period...But in proportion to the progress made
in a game of chess, is the uncertainty of each ensuing move.
A few moves having been made, no step is certain. Different
spectators of the game would advise different moves. Allis then
dependent upon the variable judgment of the players. Now even
granting (what should not be granted) that the movements of
the Automaton Chess-Player were in themselves determinate,
they would be necessarily interrupted and disarranged by the
indeterminate will of his antagonist. There is then no analogy
whatever between the operations of the Chess-Player, and those
of the calculating machine of Mr. Babbage.

Is it possible for the calculations that a machine is capable of carrying
out according to a fixed algorithm truly to be upset by the opponent’s play?
That is certainly the case for games like rock—paper—scissors, but is it true
for chess? Can moves be evaluated on the basis of an opposing strategy?
Or is trying to figure out the opponent’s psychology superfluous to optimal
play? Such holds for any number of chess problems and endgames, in
which the player can force a win no matter how the opponent plays. In
other endgame situations, each player can prevent a loss, so that if no
player makes an error, the game will end in a draw. But are there other
positions, comparable to the starting position in rock—paper—scissors, that
cannot he categorized in this scheme?

This question was raised and then answered in 1912 by the German
mathematician Enrst Zermelo (1871-1953). This is how he began a talk
presented to the Fifth International Congress of Mathematicians:

The following considerations are independent of the particular
rules of the game of chess and indeed are valid in principle for all
similar games of skill in which two opponents play against each
other without the intervention of chance events. However, for
definiteness, they will be exemplified by chess, the best known
game of this type. Furthermore, we are not going to consider

1E. Zermelo, Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels,
Proceedings of the Fifth Congress of Mathematics, volume II, Cambridge 1913, pp. 501-
504. Zermelo, whose mathematical work concentrated on the axiomatic foundations of
mathematics, later offered a suggestion for the ranking system in chess tournaments:
Die Berechnung der Turnier-Ergebnisse als ein Maximierungsproblem der Wahrschein-
lichkeitsrechnung, Mathematische Zeitschrift 29, 1929, pp. 436—-460.
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a practical method of play, but will concern ourselves with the
question whether the value of an arbitrary position that can
occur in a game as well as a player’s best possible move can
be determined or at least defined in a mathematically objective
manner, without recourse to such subjective, psychological no-
tions such as the “perfect player.” That this is possible at least
in certain special cases is shown by “chess problems,” that is,
examples of positions in which it can be proved that the player
whose turn it is to move can force checkmate in a prescribed
number of moves. However, it seems to me worth considering
whether such an evaluation of a position is at least theoreti-
cally conceivable and whether it makes any sense at all in other
cases as well, where carrying out the analysis encounters the
complication of an enormous number of possible continuations,
and only such validation would provide a firm foundation for
the practical theory of endgames and openings as we find them
in books on chess. The methods that we use in what follows
are taken from set theory and the logical calculus, demonstrat-
ing the fertility of this mathematical discipline in a case that
concerns finite quantities almost exclusively.

Zermelo then proves with relatively little effort a theorem that states
that the positions of chess and comparable games are completely deter-
mined; that is, they always satisfy one of the following three conditions:

e white can win regardless of how black plays.
e black can win regardless of how white plays.

e each player can achieve a draw, regardless of how the opponent plays.

If neither player makes an error that causes the loss of what was oth-
erwise attainable, then the result holds for every position, including, of
course, the opening position. And now we have arrived at the border be-
tween theory and practice. The fact that every position can be placed in
one of three categories says nothing about how such a determination can
actually be made. And that is precisely the most significant open prob-
lem in chess. If it were solved, then one would know the category of the
opening position, and then, as Zermelo observed, chess “would of course
lose completely the character of a game.” Thus the fact that today, and
certainly in the future, games between the world’s best chess players and
programs do not always end the same is evidence that the complexity of
chess is too great to be overcome. To be sure, there is reason to believe
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winning positions aven positions winning positions
for white for black
all positions

Figure 18.2. At least one “pigeonhole” contains two positions.

that black does not have an advantage by going second, although the large
number of draws suggests that chess is essentially an even game. But all
of this is pure speculation.

However, there is no speculation at all in the answer to the question
raised at the beginning of the chapter. Since there are only three classes of
different positions with respect to the prospects of winning, there must be
at least two among the four given positions that belong in the same category
(see Figure 18.2).2 Which two positions are equivalent, and whether there
are more than two that are equivalent, is simply not known.

Does it make any sense to state such vague results? It certainly offers
no help to a chess player. However, such results create a foundation on
which further results can be derived. How that can be done will be the
topic of the next chapter. Here is a brief preview:

¢ for some games, much simpler than chess, optimal strategies and their
accompanying prospects for winning can be explicitly determined. In
other cases, one can determine the prospects for winning without
being able to derive an optimal strategy.

e the principle underlying Zermelo’s theorem is used, in modified form,
in chess programs.

e games like chess and go are considered games of pure skill. Zermelo's
theorem supports that view. In other words, the way a game is played

2This principle, which goes back to an argument of Lejeune Dirichlet (1805-1859), is
known in number theory as Dirichlet’s pigeonhole principle.
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is closely related to it formal properties. It is thus of interest to check
the conditions under which the theorem holds for other games.

This last point is worth going into a bit more deeply. The following
five properties suffice to make Zermelo's theorem applicable to a particular
3
game:

1. the game is played by two players.
2. one player’s win is equivalent to the other player's defeat.

3. the game ends after a finite number of moves, and at each stage, a
player has only a finite number of moves from which to choose.

4. the game exhibits perfect information; that is, all information about
the state of the game is always available to both players.

| =4

5. there is no influence from random processes.*

The second condition ensures that the outcome of the game is one of
the pairs (1, —1), (0,0), (—1,1), as games like chess are scored. If a loss is
interpreted as a negative win, then the sum of winning values is always zero,
and one therefore speaks of a zero-sum game. In a zero-sum game, the two
players always have ahsolutely opposing interests. The third condition is
satisfied in chess by the rule that a game is considered a draw if 50 moves
pass in which no pawn is moved and no piece taken. Thus an infinite
shifting of the pieces on the board is ruled out. It is essential for Zermelo’s
theorem that the players alternate moves. Simultaneous games like rock—
paper—scissors are excluded by the fourth point.® Finally, results other
than the three allowed in chess are possible, such as a double win (2, —2)
for white.

If a game satisfies all five conditions, then Zermelo’s theorem holds,
and the game is completely determined in the sense that the outcome is
determined if both players play optimally. That is, with the game position
is associated a unique result such as (1,—1), (0,0), or (—2,2) that will
always be achieved by error-free play. That is, at least one of the players

3We shall not state precisely at this point just what is meant by a “game” in the
mathematical sense of the word. The notion of games that is available from the examples
that we present will suffice for now.

4This condition can be removed if the notion of a win is replaced by its expectation.
Then Zermelo’s theorem holds as well for games such as backgammon.

5If both players play simultaneously, as in rock—paper—scissors, the game can be
modified to have the moves made sequentially without changing the game substantively.
In that case, the first player’s move is not revealed until the second player has made a
move. The result is that there is no longer perfect information.
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can play in such a way that regardless of the opponent’s play, the result is
achieved. And conversely, a player cannot improve his result if his opponent
plays optimally.

We may formulate Zermelo’s theorem more precisely by introducing
the notion of a strategy. A strategy represents for a player a complete
set of instructions on how to play; that is, for every situation in which
the player must move, the strategy offers an optimal move. Of course,
such a strategy might encompass a great deal of information and may
be enormously difficult to describe, but that is not going to inhibit our
theoretical examination of the subject. At this level, we might even think
about altering the rules of an arbitrary two-person game so that both
players are required to announce their strategies before play begins. There
are several variants to this scheme that we might consider; they differ in
the amount of knowledge of the opponent’s strategy possessed by a player
before announcing his or her own strategy:

e both players come up with their strategies in secret and announce
them simultaneously.

e Ms. White (who plays first) must announce her strategy before black
is required to announce his.

¢ Mr. Black (who plays second) must announce his strategy before
white is required to announce hers.

Let us now examine how these three variants of the rules affect the
prospects of the players in a two-person zero-sum game.

If we look beyond the somewhat involved wording, we see that the
first variant is a reformulation of the original game. The fact that the
players have to announce their strategies has no effect on their chances
of winning, since for any situation in which a decision has to be made, it
makes no difference regarding strategy whether the situation has already
arisen. What is important is simply that each decision to be made is based
precisely on the state of information that would be available to a player in
a real game.

On the other hand, the other two variants alter the information available
to the players, since one of them will be able to examine the opponent’s
strategy and make use of possible weaknesses. Such a player therefore
has more information than was available in the original game; namely, the
player knows how the opponent will behave in any situation. In games
like rock—paper—scissors, such an advantage is enormous, since it makes
possible a certain win.
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Maximin Value < Minimax Value

The maximin is the value that The minimax is the smallest
white can be assured of if black wvalue to which black can limit
plays optimally with respect to white's game value if white plays
the strategy announced by white. optimally with respect to the
strategy announced by black.

Figure 18.3. The two values of a two-person zero-sum game.

If White has to announce her strategy first, she will attempt to find a
strategy that optimizes her chances of winning regardless of black’s reply to
her moves. White thus considers the worst-case scenario, in which black’s
reply will minimize her chances of winning. She thus will choose a strategy
that maximally cancels this minimum. The game value of such a strategy
is quantified as the mazximin value.

In the converse case, in which black must announce his strategy first,
he must come up with moves that counter those of white to cancel white’s
chances as much as possible. Black must therefore play in such a way as
to minimize white’s attempt to maximize her chances. The game value of
black’s strategy is called the minimaz value.

In sum, white pursues a strategy that achieves at least the maximin
value of the game, while black’s strategy seeks to prevent white from achiev-
ing more than the minimax value. In particular, the maximin value is less
than or equal to the minimax value, and so one speaks of the lower and
upper values of a game (see also Figure 18.3).

In the case of the game rock—paper—scissors, these two values are dif-
ferent, namely, they are —1 and +1. The situation is different for games
like chess that satisfy Zermelo’s theorem. With reference to the two game
values, Zermelo’s theorem can be formulated thus: under the hypotheses
of the theorem, the maximin value is equal to the minimax value. This
common value is called the game value (see Figure 18.4). Zermelo's theo-
rem is thus frequently called the minimax theorem. Chess therefore differs
fundamentally from a game like rock—paper—scissors, since in chess it is
of no help to know the strategy of an optimal player. Thus chess can

|Maximin Value = Minimax Value‘

Figure 18.4. Zermelo's theorem is valid for two-person zero-sum games with perfect
information.
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be played completely without reference to the opponent, all moves being
planned according to objective criteria. Such a game can even be played
by a computer that has been accordingly programmed.

For games that satisfy the conditions of Zermelo's theorem, the mini-
max strategies create a sort of balance that neither player can shift to his
or her advantage. One can interpret the situation geometrically by plac-
ing the game values resulting from the two strategies in a two-dimensional
coordinate system (an example can be seen later in the chapter in Fig-
ure 18.7). Maximin and minimax strategies thus form together with their
game values a saddle point. One therefore speaks of saddle-point strategies,
though also of minimax, maximin, and optimal strategies. A player who
employs an optimal strategy can reveal that strategy without suffering any
disadvantage.

It is significant that the value of a game with perfect information can be
determined recursively. One does this by minimizing and maximizing move
by move: if it is white’s turn, the game value is equal to the maximum
value of the positions that follow, while on black's turn, the subsequent
positions are to be minimized. As we shall see, this process is one of
the foundations of chess programs. The recursive maximin process is made
clearer by representing it in the form of a game tree. Positions are indicated
by nodes at the branch points in the tree, while moves are represented by
the edges. A game is represented as running downward, and so the root
of the tree, symbolizing the start position of the game, appears at the
top. The end positions, or end nodes, correspond to the various possible
endings of the game, and are labeled with the associated outcomes of the
game. Figure 18.5 presents an example of a three-move game.

The value of a game can now be calculated from bottom to top using
alternating maximizations and minimizations. Starting with the end po-
sitions and the winning values for white, one moves upward step by step.

white moves

black moves

white moves

Figure 18.5. A three-move game represented as a game tree.
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Figure 18.6. Mutually optimal play.

When white moves, the maximum value is taken for the next-lowest level,
and when black moves, the minimum value is used. Thus, for example, we
see in Figure 18.6, emphasized with a heavy line, the path through the tree
that is optimal for both sides.

This example is also well suited for a more precise discussion of the
notion of strategy. If white decides to open with move a in Figure 18.5,
then she has no need to make any further plans. The situation is different
for move b, for which white must have a plan, in the event of black’s
choosing move r, whether to make move ¢ or move d. Therefore, white
has a choice of three strategies: a, b-¢, and b-d. Black must also plan
for two positions with which he may be confronted. This represents six
strategies, namely, p-r, p-s, p-t, ¢-r, ¢-s, and g¢-t. If we record the results
of all the combinations of white’s and black’s moves in a table, we achieve
the normal form of the game. This has immediate practical value only for
games that are not much more complex than the one presented here. For
chess, we would have an enormous table of astronomical complexity. The
importance of the normal form is that a game without perfect information
like rock—paper—scissors can be easily represented in normal form, but as a
tree only with considerable difficulty.

In Table 18.1, the optimal strategies with the associated saddle point
are enclosed in double lines. Neither player can improve his or her prospects

Black
p-r p-s pt| gr | gs gt
a 3 3 3|-1] -1 -1
White bc | -2 2 1) -2 2 1
b-d 0 2 1 0 2 1

Table 18.1. The normal form of the three-move game, showing the saddle point.
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Figure 18.7. Normal form as a bar graph.

by altering this optimal srategy. If a normal form is displayed graphically,
as in Figure 18.7, one can even, with a little imagination, see the “saddle™:
in one direction, there is no higher winning value, and in the cross direction,
there is none smaller.

A Proof of Zermelo's Theorem

Using the principle of strong induction, we assume that the
theorem is true for all games that take at most some number
n of moves to play. Such an assumption must hold for n = 0,
since the rules for such a game consist solely of instructions as
to who wins how much from whom. In the induction step, one
considers a game lasting at most n + 1 moves, where on account
of symmetry we may assume that white goes first. Every con-
tinuation of the game obtainable from the first move, being a
game of at most n moves, is strictly determined. That is, the
maximin value is always equal to the minimax value. We call
the largest of these values v. As we shall now show, this value
is equal to the total game value (see Note 1 at the end of the
chapter):

e white moves first, resulting in a continuation with game
value v. Then white can be assured of a win with value v
within this continuation.
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e black knows the move with which white has opened, based
on perfect information. Therefore, it is possible for black
to defend himself in the resulting continuation as he would
do in such a game. Thus white wins at most the value of
the achieved endgame, namely, at most the value v.

/‘*W'

Chapter Notes

1. For games with alternating moves that can only be either won or lost, there

is a simple proof going back to Hugo Steinhaus (1887-1972); see Marc Kac,
Hugo Steinhaus, A reminiscence and a tribute, American Mathematical
Monthly 81, 1974, pp. 572-581, which can be reduced with the help of
logical quantifiers to two lines: first, each game is increased to a uniform
length, by adding neutral moves as necessary. If wy,wa, ..., w, are white’s
moves, and by, ba, ..., b, those of black, then either the condition

Yw, by Yws dbs ... Vw, T3b,, white wins
holds, or else the opposite condition, namely,
Jwy Wby Jws Wby ... Jw, ¥b,, white does not win.

The first statement means that white possesses a winning strategy; the
second, that black does.
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Chances of Winning and
Symmetry

In order not to give any player an advantage, the rules of most board games
are essentially symmetric. Is the goal of fairness ever achieved in a concrete
case?

The games chess, backgammon, checkers, halma, reversi, go, and nine men's
morris are—aside from the privilege of the first move—completely symmet-
ric for both players. More the exception are games such as wolf and sheep?!
and Scotland Yard.?

In games like chess, the player to move first is considered to have a slight
advantage. However, as Zermelo’s theorem tells us, such a board game
offers either completely even chances to both players or a winning strategy
for one of the players. For intellectual competitions only fair games are
considered. If a two-person zero-sum game with perfect information is not

1The game is played on a checkerboard. White has four checkers, the sheep, and
black, the wolf, has a single checker. Sheep can move only forward, while the wolf can
move both forward and backward. The game is also known under the name fox and
geese. A description can be found in Claus D, Group, Brettspiel/Denkspiele, Munich,
1976, pp. 90-92. The sheep have a winning stragegy, a proof of which can be found
in Elwyn Berlekamp, John H. Conway, Richard K. Guy, Winning Ways, New York,
Academic Press, 1982,

2Scotland Yard is a well-designed game of pursuit, in which one player must be caught
by a group of cooperating opponents. The game uses a map of London, in which one
moves via public transportation. See Erwin Glonnegger, Das Spiele-Buch, Munich 1988,
pp. 124-125; Jury “Spiel des Jahres,” Spiel des Jahres, Munich 1988, pp. 56-58; Jury
“Spiel des Jahres,” Die ausgezeichneten Spiele, Hamburg 1991, pp. 55-60.
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fair, or—as is more often the case in practice—its game value is unknown,
then one may attempt to even out the odds. There are several ways in
which this can be accomplished:

e the player to move first is decided by lot. Then the chances are equal,
but at the cost of introducing an element of randomness. Even though
randomness has a small place in the overall game, its influence can
be large. In games that are not a priori fair, it could theoretically be
the decisive factor.

e two games are played, the players alternating first move. Any ad-
vantage or disadvantage accruing to the first player is compensated
in the second game. It is of no importance who goes first in which
game.

e in the board game Twixt,? by Alex Randolph, the advantage to the
first player is supposed to be compensated by the second player’s
right to decide after the first move whether to swich sides. The idea
of this rule follows the principle of division, according to which if two
children share a piece of cake, a fair division is for one child to cut
the cake and the other to choose the piece that he or she prefers. In
so-called Texas roulette, the principle is used in an altered form in
business dealings: if two equal partners in an enterprise wish to grant
each other the right of first refusal, then the price for one partner to
buy out the other can be fairly set by the rule that the partner offering
to buy out his partner must be prepared to have the partner instead
buy him out at the same price.

The methods just described appear reasonable, and indeed, they are
used in practice. However, there are significant differences among them,
which can be clarified with the help of Zermelo's theorem. To do this, we
can determine the associated game values, which is possible to accomplish
without knowing any equalization strategies.

Determining the opening player by lot means that each player has a
strategy that ensures an ezpectation of zero. What this strategy actually
looks like must often remain unresolved, since it is composed of equalization

3Twixt belongs to the class of “border-to-border” games, in which the player to
go first can always achieve at least a draw with optimal play. Two other games of
this type, namely Hex and Bridge-it, will be discussed later in this chapter. For more
on Twixt, see David Pritchard (ed.}, Modern Board Games, London 1975, pp. 92-101
(author: David Wells); Andreas Kleinhans, Tunzt: ein kleines Ezpertenheft, Stuttgart
1990 (mimeographed brochure); Erwin Glonnegger, Das Spiele-Buch, Munich, 1988,
pp. 142-143; Werner Fuchs, Spielefithrer 1, Herford 1980, pp. 106-108.




Combinatorial Games 151

strategies of the original game, and even a perfect player can lose because
of bad luck in the choice of first player.

In playing two games, the players’ chances are equalized without the
introduction of any random elements. That is, the value of the combined
games is . In particular, there is no inherent advantage or disadvantage to
going first in the first game. To realize the game value 0, a player can use
the equalization strategies of a single game. Since it is usually not known
what these are, a true intellectual battle will ensue. Moreover, a tiny change
in the rules suffices to allow a player to specify an equalization strategy,
whereby the two parties play simultaneously according to a specific order
of playing:

e player A makes a move as white in the first game.
e player B makes a move as white in the second game.
e player A makes a move as black in the second game.

e player B makes a move as black in the first game, and so on.

With this order of play, player B can simply copy the moves of player A
to ensure a value of 0. This trick was described in Sidney Sheldon’s novel
If Tomorrow Comes (in Chapter 20), in which a pair of crooks play against
two chess masters, who are a distance apart, betting a naive public that
they can achieve at least two draws or one win. It would have been even
more clever to have set bets individually for the two games.

Using the rule of switching sides, equal chances are guaranteed only
if there is an opening move that leads to a position with value 0. With
such an opening move, white can introduce an equalization strategy. All
other moves are disadvantageous for white. If the value is positive, then
black exchanges sides, and if it is negative, then black has a direct winning
strategy. The value of the game with the exchange rule is therefore at
most 0.

What we have said about all three variants depends on a comparison of
the actions available to the two players. With some games, this can be done
directly, and not just in the symmetric variant. Thus with Sid Sackson’s
board game Focus,* which is played with checkers on a checkerboard with
the corners removed, the second player can mimic the moves of the first
player. Unlike chess, focus permits such play, since the checkers can move

4Focus was introduced by Martin Gardner in Seientific American 1963/10, pp. 124-
130, and it appears in his Sizth Book of Mathematical Games from “Scientific Amer-
ican,” San Francisco 1971, Chapter 5. The game is also described in Sid Sackson, A
Gamut of Games, New York 1969; Erwin Glonngger, Das Spiele- Buch, Munich 1988,
p. 161; Jury, “Spiel des Jahres,” Spiel des Jahres, Munich 1988, pp. 44-46.
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Figure 19.1. Tic-tac-toe: white wins on the seventh move. Black’'s move, number 2,
was bad.

only horizontally and vertically, and the opening position is symmetric in
that a reflection in the center of the board is equivalent to an exchange
of colors. With a slight extension of the rules, uncertainty of play can be
restored.

There is a large class of games that begin with an empty board, and
players alternate by placing pieces of different colors, say, white and hlack,
on an empty square. Once a piece is placed, it is neither moved nor cap-
tured, which makes such games suitable for playing with paper and pencil.
The first player to achieve a particular configuration is the winner. Ex-
amples of this type of game are tic-tac-toe, go-moku, and Qubic, in which
each player strives to achieve an unbroken line of pieces of a certain length,
either vertical, horizontal, or diagonal:

e in tic-tac-toe, the object is to form a string of length 3 on a 3 x 3
board (see Figure 19.1).

e co-moku is played on a much larger board, and the object is to create
a string of length 5.

e Qubic is won by linking four pieces within a 4 x 4 x 4 cube.

What all these games have in common is that an extra piece on the
board is never a disadvantage. Since both sides have identical winning
configurations, the result of this is that the player who goes second never
has a winning strategy. If that were so, the player who moves first could
place a piece on the board arbitrarily and then adopt the winning strategy
of his opponent. If that strategy involves placing a piece on the square
containing his first piece, the player can simply again place a piece at
random. The player who moves first thereby possesses a winning strategy,
which thus refutes the assumption of a winning strategy for the second
player. This technique of stealing the opponent’s strategy was first applied
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in 1949 by the American John Nash (1928- ), who was awarded the Nobel
Prize in economics in 1994.°

We note that the game values of these three games can be determined
explicitly. In the case of tic-tac-toe, it is easy to analyze all possible moves.
We see that the second player loses only if he makes an error, so that the
value of tic-tac-toe is zero. If go-moku is played on a board of size at least
15 x 15, then the first player has a winning strategy available. This result
was proved in 1993 by three Dutch computer scientists using extensive
computer analysis that analyzed all possible moves of the second player.
They did not need a separate analysis for moves that were symmetric to
other moves, but even so, they analyzed about 15 million positions to come
up with a winning strategy in the form of a library of 150 000 moves.® A
similar extensive computer analysis for Qubic was done by Oren Patashnik
in 1980, which shows that the first player has a winning strategy.” Both
results depend on the principle, which is not undisputed in the serious
realms of mathematical research, of proving theorems by means of extensive
computer analysis. The first such theorem to be proved, and the most
renowned, was the four color theorem (see Note 1 at the end of the chapter).

.
-
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More Results on Games of Tic-Tac-Toe Type

Games related to tic-tac-toe were analyzed on a very abstract
level in 1963 by Hales and Jewett.® An example of their research
is the game in which one has to line up k& game pieces in an n-
dimensional playing field with k™ squares. Their results show
that such games have two crucial properties in common:

e if the dimension of the playing field is large enough in rela-
tion to its length, then there is no position that is a draw.
That is, no matter how the pieces are arranged, there is

5Martin Gardner, Mathematical Puzzles and Diversions from “Scientific American,”
New York 1959; John Milnor, A Nobel Prize for John Nash, The Mathematical Intelli-
gencer 17/3, 1995, pp. 11-17; Sylvia Nasar, A Beautiful Mind, Touchstone, 1999,

SVictor Allis, Jaap van den Herik, Matty Huntjens, Eine Gewinnstrategie fiir Go-
Moku, Spektrum der Wissenschaft 4 1993, pp. 25-28; Victor Allis, Searching for Solu-
tions in Glames and Artificial Intelligence, Maastricht 1994.

7Oren Patashnik, Qubic: 4 x 4 x 4 Tie-Tac-Toe, Mathematics Magazine 53, 1980,
pp. 202-216.

SA.W. Hales, R.J. Jewett, Regularity and positional games, Transactions of the
American Mathematical Society 106, 1963, pp. 222-229; reprinted in Ira Gessel, Gian-
Carlo Rota, Classic Papers in Combinatorics, Boston 1987, pp. 320-327.
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always a winning position for at least one of the players. It
follows that the first player always has a winning strategy.

e if the length of the playing field is large enough in rela-
tion to the dimension, then the second player can force a
draw. To show this, Hales and Jewett use the “marriage
theorem” (see Note 2 at the end of the chapter) to con-
struct a pairing between the squares of the playing field.
Whenever the first player places a piece on one square of
a pair, the second player places a piece on the associated
square. Since the pairing is constructed in such a way that
every winning row contains a matched pair, and no square
belongs to more than one pair, a winning row can never
be achieved (see Note 3 at the end of the chapter). For a
5 x b field, a pairing is shown in the following figure.

7|12 1017

Quite a different approach was used by Erdds and Selfridge
in 1973 to improve quantitatively the second result of Hales
and Jewett. Their defensive strategy guarantees a draw to the
second player in cases in which the number of winning rows is
not too large in comparison to their length. The strategy is
based on a formula according to which a value is attached to
the winning rows still achievable by white. White must always
choose a move that makes that value as small as possible (see
Note 4 at the end of the chapter).

e

Additional representatives of games in which pieces once played are not

moved again and in which certain configurations are to be achieved include
such “border-to-border” games as Hex, Bridge-it, and Twixt. In all these
games, the object is to build a chain from one edge of the game board to the
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Figure 19.2. The game Hex.

opposite edge. Of particular mathematical interest are Hex and Bridge-it.
In Hex,” the players lay their pieces on a hexagonal grid whose four sides
are of equal length. Figure 19.2 shows a situation in which white, who went
first, has won.

According to Martin Gardner,'® Hex was invented by the Dane Piet
Hein and then reinvented independently six years later by Nash, who was
then a student at Princeton. A game of Hex cannot end in a draw, from
which it follows that regardless of the size of the game board, white must
possess a winning strategy. However, for large boards, no one knows what
that strategy is.

And why is it that Hex cannot end in a draw? Since a strict mathemat-
ical proof, though not difficult (see Note 5 at the end of the chapter), is
not particularly illuminating, we shall content ourselves with a plausibility
argument: we begin with a game board completely filled with white and
black game pieces. We assume that black does not have a winning posi-
tion. We wish to prove that white has won. To do this, we begin to modify
the position in such a way that does not improve white’s position. More
precisely, we exchange, piece by piece, as long as we can, individual white
pieces for black pieces, provided that a winning position is not thereby
achieved for black. Black’s pieces then form two regions, neither of which
contains “islands” and which are separated by a one-square-wide path of
white pieces. This path, which is part of the original configuration, is in
fact a path across the board. White has won.

9The most extensive reference on Hex is Cameron Browne, Hex Strategy: Making the
Right Connections, Natick 2000.

100Martin Gardner, Mathematical Puzzles and Diversions from “Scientific American,”
New York, Simon and Schuster, 1959, Chapter 8.
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Figure 19.3. Asymmetric Hex with pairing strategy.

If one attempts in Hex to neutralize white’s advantage of first move by
shortening white’s edge of the board by one square, so that white must
build a path one square longer than the path that black has to build, then
black is assured of a win by a pairing strategy. That is, as with some of the
tic-tac-toe variants (see “More Results on Games of Tic-Tac-Toe Types”),
the squares of the game board can be paired off in such a way that every
white winning path contains such a pair. If black counters every move of
white by playing on the paired field, then white cannot win. The division
into pairs, as can be seen in the example of Figure 19.3, is the result of a
reflection in the dark line running across the board.

Some similarities to Hex can be seen in the border-to-border game
Bridge-it, invented by David Gale (1921- ), like Nash a pioneer of game
theory. This game was introduced in Martin Gardner’s Scientific American
column in October 1958.1! The game is played with oblong pieces that are
used to connect points of the player’s color if the path is not crossed by an
opponent’s bridge. Figure 19.4 shows a game in which white, who played
first, has won.

As with Hex, it can be seen that a draw in Bridge-it is impossible.
Therefore, there must be a winning strategy for white. In contrast to Hex,
it is possible to determine a winning strategy rather easily. Thus Oliver
Gross has presented a pairing strategy in which white begins with the
move depicted in Figure 19.5 and then counters black’s moves pairwise as
indicated by the thin lines: each line crosses a move that black can make
as well as a move that white can make; these are basically the moves that

HSee also Martin Gardner, Second Book of Mathematical Puzzles and Diversions,
New York 1961, Chapter 7.
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Figure 19.4. The game Bridge-it.
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Figure 19.5. Pairing strategy for white after the first move.

are paired.!? This strategy makes it impossible for black to connect both
sides of his territory.

A game that is considered to have equal chances on the basis of a long
tradition is nine men’s morris.'® A good player will lose neither as white nor
as black. To be sure, white has the advantage of first move, which permits
some aggressive threats. However, the tide frequently turns when black
places the last stone and thereby puts his stamp on the subsequent play.
How the various countervailing influences are balanced has been known in
detail since the early 1990s. Using extensive computer analysis, the Zurich-

12 Martin Gardner’s New Mathematical Diversions from “Scientific American,” New
York 1966, Chapter 18.

13For the rules and advice on play for nine men’s morris, see So gewinnt man Miihle,
Ravensburg 1980.




158 19. Chances of Winning and Symmetry
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Figure 19.6. Whoever moves first, loses.

based computer scientist Jiirg Nievergelt and his doctoral student Ralph
Gasser proved that both white and black can force a draw.* However, it is
easier for black to play optimally than it is for white. Up to symmetry, in
the first eight (half) moves, there are 4393 positions that black has to take
into account, while for white's strategy, that number is 15513. Nievergelt
and Gasser also carried out extensive statistical investigations into how
the material strength of each side influences, on average, the chances of
winning.

Figure 19.6 shows an example of a position in nine men’s morris that
demonstrates the power of computer analysis: whoever moves first, loses.
If white moves first, she can defend her position for 37 double moves, while
if black moves first, he can last “only” 30 more double moves.

Chapter Notes

1. The four color theorem asserts that any planar map consisting of adjacent
countries can be colored with four different colors in such a way that no
two countries sharing a common border have the same color. See Kenneth
Appel, Wolfgang Haken, Fvery Planar Map is Four-Colorable, Providence,
RI, American Mathematical Society, 1989; Keith Devlin, Mathematics, the
New Golden Age, New York 1999; Ian Stewart, The Problems of Mathe-
matics, Oxford 1987.

2. The marriage theorem deals with a situation in which m sets are given from
each of which a single element is to be chosen. The theorem states that a
selection of m distinet elements can be made from the m sets if and only

4R, Gasser, J. Nievergelt, Es ist entschieden: Das Miihlespiel ist unentschieden, In-
formatik Spektrum 17, 1994, pp. 314-317; Ralph Gasser: Solving Nine Men's Morris,
in: R.J. Nowakowski (ed.), Games of No Chance, Cambridge 1996, pp. 101-113.
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if every union of k of the m sets contains at least k elements. The name
“marriage theorem” comes from an interpretation of the problem in which
each of the sets contains those women who would be willing to marry a
particular man, and the problem is to choose one woman from each set, so
that each woman is provided with a man whom she would consent to marry.
Of course, the roles of men and women can be exchanged or modified to
suit, and marriage can be replaced by any other activity in which two
persons might wish to engage. The question is whether it is possible for
each of the men to find a woman who would consent to marry him. The
criteria of the marriage theorem are here equivalent to the scenario that in
every possible constellation of a party in which any number of men and all
women acceptable to them participate, there are at least as many women
as men.

The marriage theorem was rediscovered in a variety of forms between 1910
and 1935. An overview can be found in Konrad Jakobs, Selecta Mathemat-
ica I, Heidelberg 1969, pp. 103-137.

3. For this to work, the number of winning rows to which a square belongs
cannot be too large, since otherwise, a move on that square would result
in a decisive multipronged threat. A measure of this is the largest number
Wyax Of Winning rows that run through a single square. Because of the
diagonals, this maximum occurs in or around the center. For even squares
(n = 2), one has, for example, Wyax = 4 for odd k, and wyax = 3 for even

k.

The marriage theorem is now applied to the sets that contain all winning
rows, each in two distinguishable instances. This duplication can be done
by associating a marker with each winning row, such as a direction. If one
has a selection of @ such directed winning rows, then these encompass at
least

a k

*
2 Grmax

distinct squares. Even with this crude estimate, the marriage theorem
can be applied for & > 2gnax, since then a directed winning rows always
encompass a or more squares. One can thus find for each directed winning
row a square, and consequently, for an even winning row a pair of squares,
such that no square must be taken more than once. For even squares, then,
the pairing strategy has been proved in the case k > 6.

4. Geometric considerations show that in the case of k™ tic-tac-toe, there are

((k+2)" = k")

bBa | =

winning rows. Namely, to each square of a one-square-side border there
corresponds exactly one winning row, which in turn runs through two such
border squares. If this number is less than 281, then black, the second
player, can prevent a white victory.
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This fact is a special case of a more general criterion that makes an as-
sertion about how many squares the various winning rows contain: let |A|
denote the number of squares that the winning row A contains. Then if

the inequality
1
> g <

A is a winning row

b | =

is satisfied, then black can prevent a white win.

This criterion can be explained as follows: black can play in such a way that
one can easily project how this sum will change in the course of the game.
In this, the winning rows are considered only from white’s viewpoint. That
is, in updating the sum, any winning rows blocked by black are excluded,
while the winning rows partially completed by white are correspondingly
reduced; concretely, if W and B denote respectively the sets of squares
occupied by white and black, this corresponds to the sum

1
> AW

A is a winning row
with AN B =

On her first move, white can at most double the value of the sum, so
that all achievable summation values at this point in time are less than
1. In further play, based on the current sum, black can come up with a
set of moves that keep him from losing. Concretely, for his move, black
is searching for a square that limits this sum as much as possible. In a
currently achievable sum of
1
2 ger
[&

he should choose a square b in such a way that the resulting summands
become as great as possible. If white then moves on square w, then the
summands double on those winning rows that are still achievable by white
and contain the square w. The total change resulting from these two moves

is
1 1 1 1
- — —_— < —_ — <
z 21C| + Z 2l — Z 2lc] + Z 21C — 0,
e Crwe CbEC Crws
bgC

where the second inequality holds on account of the choice of move for
black to the square b. It follows that the sum remains smaller than 1 at
the times at which white moves, with the result that white cannot achieve
a victory, since that would require that the sum be at least 1.

For the case of k™ tic-tac-toe, the assumption can be weakened, since on
white's first move, instead of the assumed doubling, the most that is pos-
sible for an increase in the sum is

1

Jmax X ﬁl




Combinatorial Games 161

where as earlier, gmax denotes the maximal number of winning rows that
run through a single square. In consequence, the condition that the total
number of winning rows be less than 2k _ Jmax already suffices to allow
black to prevent a white victory.

For more information, see P. Erdds und J. L. Selfridge, On a combinato-
rial game, Journal of Combinatorial Theory B 14, 1973, pp. 298-301; J.
Beck, Achievement games and the probabilistic method, in: Miklés, D.,

Sos, V. (eds.), Combinatorics, Paul Erdds Is Eighty, volume 1, Keszthely
(Hungary) 1993, pp. 51-78.

. Two different proofs that Hex cannot end in a draw can be found in David

Gale, The game Hex and the Brouwer fixed-point theorem, American Math-
ematical Monthly 86, 1979, pp. 818-827. In addition to a relatively ele-
mentary proof, it is shown that the impossibility of a draw is equivalent
to Brouwer's (1881-1966) fixed-point theorem, whose planar version makes
the following assertion: a continuous function that maps a 1 x 1 square,
including the boundary, to itself has at least one fixed point, that is, a
point that is mapped to itself. This doubtless quite abstract result has
some down-to-earth consequences. Suppose one has two identical sheets of
paper lying on top of each other. If you take the top piece, crumple it up
into a ball without tearing it, and then place the ball on top of the second
piece without its going over the edge, then there is at least one point on
the crumpled sheet that is lying over its original position.

For the general version of Brouwer’s fixed-point theorem, that is, no longer
restricted to the plane, Gale generalized the game Hex to a higher-
dimensional variant.

Brouwer’'s theorem has often proved useful in mathematics. It has been
used, for example, to prove equilibrium theorems such as von Neumann’s
minimax theorem, first proved in 1928, and the multiperson variant proved
in 1951 by Nash, the coinventor of Hex. We will have more to say about
this in Chapters 34 and 43. A popular yet multifaceted representation
of Brouwer’s fixed-point theorem can be found in John Casti, Five Golden
Rules: Great Theories of 20th- Century Mathematics and Why They Matter,
Hoboken, NJ 1996.
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A Game for Three

Three players alternate taking turns removing stones from a pile that ini-
tially contains a certain number of stones. Fach player can take at most
five stones. The player to remove the last stone wins one unit from the
player who drew previously. The third player wins nothing and loses noth-
ing. What should the players’ strategies be?

The game that we have just described was first investigated by the chess
master and mathematician Emanuel Lasker! (1868-1941) in his 1931 book
Brettspiele der Vélker.

In a chapter on mathematical “contact sports,” Lasker first investigates
two-person games and then attempts to generalize his results. Can it be
determined for three players which among them can win with error-free
play?

Following Lasker, let us analyze the game in reverse. Suppose the three
players Xavier, Yves, and Zelda draw in alphabetical order. If there is only

1Lasker is known as a mathematician for his 1905 theorem in ideal theory, a branch
of abstract algebra. Lasker’s theorem is useful in the analysis of solution sets of systems
of polynomial equations (E. Lasker, Zur Theorie der Moduln und Ideale, Mathematische
Annalen 60, 1905, pp. 20-116). A comprehensible explanation of this subject is given by
Bartel L. van der Waerden, “Meine Gottinger Lehrjahre,” Mittetlungen der Deutschen
Mathematiker Vereinigung 2, 1997, pp. 20-27; see also Markus Lang, Laskers “Ide-
ale” und die Fundierung der modernen Algebra, in Michael Dreyer, Ulrich Sieg (eds.),
Emanuel Lasker: Schach, Philosophie, Wissenschaft, Berlin, 2001, pp. 93-111.

Lasker was the world chess champion in the years 1894 and 1921. It is more difficult to
comprehend the role of Lasker as the driving force behind game theory, as presented in
Georg Klaus, Emanuel Lasker, Ein philosophischer Vorlaufer der Spieltheorie, Deutsche
Zettschrift fur Philosophie 13, 1965, pp. 1/976-988.

162
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Size of Pile | Win for Player Drawing
First Second  Third | Move
0 0 —1 1
1 1 0 —1 | take 1
2 1 0 —1 | take 2
3 1 0 —1 | take 3
4 1 0 —1 | take 4
5 1 0 —1 | take 5
G -1 1 0 | arbitrary
7 0 -1 1 | take 1
8 1 0 —1 | take 1
9 1 0 —1 | take 2
10 1 0 -1 | take 3
11 1 0 —1 | take 4
12 1 0 —1 | take 5
13 -1 1 0 | arbitrary
14 0 -1 1| take 1
15 1 0 —1 | take 2

Table 20.1. Equilibrium in a three-person game.

one stone remaining, the player whose move it is wins at once with the
only possible move. Victory is also obtainable if two through five stones
remain, all of which can be removed in one fell swoop. The other possible
moves are certainly less attractive. If Xavier, say, is confronted with six
stones, he has nothing nice to look forward to. Whatever he does, Yves
can win and inflict a defeat on Xavier. A pile of seven stones offers a better
scenario. Namely, if Xavier, say, removes a single stone, then Yves will lose
to Zelda, and Xavier will break even. A pile of 8, 9, 10, or 11 stones is yet
more favorable. If it is Xavier’s turn, he will take the appropriate number
of stones to reduce the pile to seven stones, granting a draw to Yves and
victory to himself.

These results are collected in Table 20.1. For each size of pile, the game
values are given for the players in the order in which they draw. In the
right-hand column are listed the optimal moves. The resulting strategies
of the players create an equilibrium (see “Multiperson Games with Perfect
Information” at the end of the chapter).

Each row of the table is derived from the row above it. The player who
is to draw, say it is Xavier, chooses the move that promises the greatest re-
turn. To decide how many stones to draw, Xavier looks in the five previous
columns and chooses the move that will produce the row with the greatest
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win amount in the third column, since following his turn, he will be the
third to draw from the new position. The result is a table that repeats
itself periodically every seven rows.

Looked at from this point of view, it would appear that the three-
person game that we have been considering is determined analogously to
such two-person games as chess, go, and so on. But is that really so? In
particular, we might ask what would happen if one of the players does not
act according to the prescription that we have set down. In other words,
what are the consequences of one of the players not playing optimally? Let
us consider the following example: suppose that after Xavier's first move, in
which three out of an original ten stones were removed, Yves thoughtlessly
takes five stones? This gives Zelda, who originally was cast in the role of
loser, an opportunity to win the game. Zelda’s profit is paid for by both
of the other two players. Yves's stupidity worsened his position from 0 to
—1, but poor Xavier, who was uninvolved in the wrong move, who should
have emerged the victor from a pile of ten stones, had his position reduced
from 1 to 0.

You may be sure that such a possibility did not escape Lasker’s atten-
tion. He remarks:

player A wins, provided that B does not act against his own
interest, and he does not lose if C does not make the same
error.

In relation to larger piles, Lasker continues thus:

of course, if B and C both make such errors, and then play
without error, then A loses.

And in fact, if one starts with 15 stones, it is possible for errors of the
second and third players not only to rob the first player of a victory, but
to give him a defeat. The “errors” of these two players have the effect of
increasing their mutual winnings from —1 to 1. Thus we may contemplate
that what is going on is not erroneous play, but a successful cooperation
between the second and third players. Such possibilities are revealed in
Table 20.2, which again shows the prospects for three players, only this
time tabulated with the winnings that a single player can get for himself on
his own. Assumed is a coalition of the opponents, who attempt to optimize
their total winnings. In other words, the variants “one against two” are
investigated as a two-person game based on the minimax principle.

This table, like the previous one, can be calculated recursively, where
again, one considers the five preceding rows. For the first win column,
which contains the winning amount for the first player, the values of the
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Size of Pile | Win for Player Drawing

First Second  Third | Sum

0 0 -1 1 0

1 1 0 -1 0

2 1 0 -1 0

3 1 0 -1 0

4 1 0 -1 0

5 1 0 -1 0

6 -1 1 0 0

7 0 -1 0 -1

8 0 -1 -1 -2

9 0 -1 -1 -2
10 0 -1 -1 -2
11 0 -1 -1 -2
12 0 0 -1 -1
13 -1 0 -1 -2
=14 -1 -1 -1 -3

Table 20.2. A three-person game: winning amounts achievable by one player against

two.

last win column for the chosen move must be maximized. The winning
amounts of the two players whose turn it is not are to be correspondingly
minimized, and so for the second win column, the five preceding values
of the first win column must be minimized. Analogously, the third win
column is derived from the second. One sees at once that in piles of at
least 14 stones, no player has a chance when the other two players are
united against him.

It is clear, then, that three-person games can have quite a different
character from that of the two-person zero-sum games that we have been
considering. Although chance does not play a role, the results for the three
players have nowhere near the stability that we found with Zermelo’s the-
orem. While no individual player can be certain of achieving the result
that we found in Table 20.1, such a result may be possible for two play-
ers cooperating, in two moves that taken individually appear unfavorable.
Such games are seldom considered as fair intellectual contests. This also
shows why there are few intellectual games for three or more players. There
have at times appeared three-person variants of board games like chess, but
none has achieved significant popularity.? An exception is board games for

2See D.B. Pritchard, The Encyclopedia of Chess Variants, Surrey 1994, in partic-
ular, the entries on three-person and four-person variants (pp. 310-313, and the cross
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four players divided into two teams. Since the members of a team either
win together or lose together, such games have more the character of a
two-person game.

However, the idea of intellectually demanding multiperson games is
not unthinkable. One must assume that the sum of the values that each
player can achieve on his own is equal to zero. Then, no coalition can
achieve more than can its individual members acting alone. In the theory
of cooperative games, of particular interest in applications to economics
involving coalitions, such games are called inessential. In this sense, an
example of a game that is both inessential and at the same time balanced
in its prospects for winning is a chess tournament in which each player
plays every other participant twice, alternating the right of first move. On
the one hand, this tournament game is symmetric, so that no player can
be assured of a winning value greater than (0. On the other hand, each
combination of two games has the value zero, due to the symmetry of
the two games. Thus it is theoretically possible for each player to assure
himself of at least a win value of zero over the entire tournament. In
the end, this is due to the fact that in such tournaments, coalitions can
operate only on the level of individual games, which offers no real benefit
due to the zero-sum nature of the games.? However, caution is advised: if
a victor is to be determined, then it must not be based on the player with
the highest number of points, since then a coalition could assist a selected
member. However, such support within a coalition is fruitless if each player
is declared a winner of a match who has a total result of at least zero.

Multiperson Games with Perfect Information

One way of generalizing Zermelo's theorem to multiperson games
is to investigate a game’s equilibrium. An equilibrium involves
a strategy for each player, and these strategies taken together

references to pp. 113-119); Siegmund Wellisch, Das Drelerschach, Wiener Schachzeitung
15, 1912, pp. 322-330.

3 A nice example of how tournaments designed on other principles can have consid-
erable significance from a game-theoretic point of view is the first round of the 1982
World Cup soccer tournament. Germany and Austria found themselves in the last game
of their set at a score that would allow both of them to advance to the next round. They
“agreed” to leave things as they were, provoking a loud protest in the media that the
ball was simply being kicked leisurely about the field, behavior that is incomprehensible
from a game-theoretic perspective.
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should satisfy the following condition: if all the strategies ex-
cept for that of one player use such an equilibrium, then this
one player cannot do better than to do likewise. That is, for
no individual player is it worthwhile to deviate from an equilib-
rium. Furthermore, strategic combinations that do not form an
equilibrium are recognizable in that after the fact, at least one
player should be unhappy with his strategy, since a different
strategy would have brought a higher win value.

In principle, every finite multiperson game with perfect infor-
mation, even one without a zero-sum character, can be analyzed
like the three-person game considered in this chapter. In the
reverse chronological order of the game, one obtains an equi-
librium step by step, which shows that at least one such equi-
librium exists. An existence theorem was first formulated in
this generality by Kuhn (1925— ).* We shall consider in Chap-
ter 43 what more can be said about equilibria in games without
perfect information.

In comparison to the special case of two-person zero-sum games,
the equilibria of general multiperson games with perfect infor-
mation have much less stability. Thus the expectation of vie-
tory, being linked to an equilibrium, can be destroyed both by
poor play of a single opponent or the deliberate cooperation of
several opponents; thus in our example, the player who was to
draw from a pile of ten stones was no longer assured of vic-
tory. On the other hand, it is possible for there to be equilibria
of different kinds. For example, how does a player act when
he can choose between two moves that have the same outcome
for him, but differing outcomes for his various opponents? In
our example, such situations cannot exist, due to the distri-
bution of winnings in the form (1,0, 1), though they would
exist if the distribution were (2, —1, —1) with the other rules
unchanged. And even in games for two persons, though with-
out the zero-sum property, there can exist several equilibria of
varying winning distributions.

To form such coalitions is considered taboo in many games,
even if the rules do not explicitly forbid it. In any case, it is
of interest to measure the “power” of such coalitions. In 1928,
John von Neumann came up with an approach to multiperson

4H. Kuhn, Extensive games, Proceedings of the National Academy of Sciences of the
75A 36, 1950, pp. 570-576. The theorem can also be found in most books on game
theory.
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zero-sum games that used coalitions to reduce the situation
to a two-person game.® In the case of three-person games, it
suffices to calculate the winnings that each player can ensure for
himself. Because of the zero-sum property, this sum can never
be positive. In our example, this winning sum, as we saw from
Table 20.2, can take on the values 0, —1, -2, —3, depending on
the number of stones. If we change the signs of these numbers,
the number provides information about the portion of the total
winnings that no player can be sure of obtaining. This is the
amount of “booty” that a two-person coalition can obtain above
the individually obtainable winnings. Thus if the game starts
with ten stones, the winning distribution (0, —1, —1) shows that
a bonus of two units of winnings accrues to the two-person
coalition.

5 John von Neumann, On the Theory of Games of Strategy, in: Contributions to the
Theory of Games IV, Annals of Mathematics Studies 40, Princeton 1959. In Chapter 43,
we will discuss von Neumann’s ideas about coalitions in somewhat more detail.
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Nim: The Easy Winner!

Jack and Jill alternate removing stones from three piles, which initially
contain siz, seven, and eight stones. A turn consists in choosing one of the
piles and removing one or more stones from it, up to the total number of
stones in the pile. The winner is the player who removes the last stone.
Jill goes first. How should she play?

Nim, as this game is called, is perhaps the best-known game for which a
complete mathematical theory exists. Thus the reader may already know
the answer to the question posed: Jill should remove seven stones from the
largest pile.

Behind this solution stands a formula that was discovered in 1902 by
Charles Bouton.! Bouton showed that the player to move second has a
winning strategy available precisely when a certain “nim sum”? is equal
to zero. This sum is the result of a base-2 addition without carry. An
example of a position for which the second player has a winning strategy is
three piles of sizes 6, 7, and 1. The binary representation of these numbers,
namely, 110, 111, and 1, yields the nim sum 0. See “Nim Addition” for
more on nim addition.

1Charles L. Bouton, Nim, a game with a complete mathematical theory, Annals of
Mathematics, Series II, 3, 1901/02, pp. 35-39. Richard Guy writes in Mathematical
Reviews 1982 f: 90101 that nim is probably not much older than Bouton’s article. The
oft-repeated “fact” in books on games that nim is an ancient game is not supported by
any evidence.

2Not to be confused with dim sum, the Chinese dumplings.

169
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Nim Addition

The reader is probably aware that the decimal system that we
use in our everyday lives is not the only way in which numbers
can be represented, and that there is also a binary system, which
is used by computers for the internal representation of numbers.
In binary representation, the number 2 is used in place of the
decimal system’s 10, so that one needs only two symbols, 0 and
1. Instead of representing numbers as powers of 10, as in the
decimal representation

209 =2x1004+0x10+9 x 1
=2x 10240 x 10" + 9 x 10°,

one can use powers of 2, in which case we may write

209 =1x128+1x64+0x32+1x16
+0x84+0x440x2+1x1
=1x2"T4+1x2040x2°4+1x2%

+0x224+0x224+0x2" +1x2°

Thus we may write the number represented by 209 in base 10
as 11010001 in base 2. The arithmetic operations are carried
out just as in the decimal system, except that the difference in
the number of digits available means a difference in carrying: in
base 10 a carry takes place if the sum of digits is greater than
9, while in binary, there is a carry if the sum of digits exceeds 1.
Here is an example of binary addition of the numbers 5 and 7:

101

111
+111

1100

In this particular example, there are three carries of 1. If we
were simply to ignore all the carries, then we would no longer
have a correct sum. But we may simply declare such carryless
addition to be a new arithmetic operation, called nim addition
and indicated with the symbol “+3.” We would then have 5+
7 =2
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Nim addition satisfies most of the properties of usual addition.
It is commutative, that is, a +9 b = b +3 a, and associative,
meaning that (a +2 b) +2¢ = a +2 (b +2 ¢). Zero remains a
neutral element in nim addition, since one always has a +50 =
0 42 a = a. We have no need of negative numbers, since for
every number we have @ +2 ¢ = 0. When we compare nim
addition to regular addition, we see that a sum in the former
never exceeds the analogous sum in the latter; that is, we always
have a +2 b < a + b.

We note the following interesting, though rather complex, for-
mula:

a+o b=
min(N—{a" 4+2b[0<d <a}~{a+2b'|0<b <b}).

This means that one can calculate a nim sum from two other
numbers in the following way: for each summand, one forms
all nim sums in which that summand is replaced by a smaller
value. The nim sum is then the smallest natural number that
is not one of the nim sums thus calculated.

P e

One can proceed as follows to determine whether a winning move is
available: first, given the sizes of the piles a,b, ¢, calculate the nim sum
s =a+2b+sc+s---. There is a winning move only if this sum is not equal
to zero. One can recognize a pile from which stones can be removed by
the fact that adding its size to the nim sum s results in a number smaller
than that size. For example, if a +5 5 < a, then a win can be achieved by
removing stones from the first pile. One should remove a quantity of stones
resulting in a remainder of a+3 s stones. Then, just as desired, the resulting
position will contain the nim sum (a 43 s) +ab+oc+a---=s+25 = 0.

In our example, with piles of sizes 6, 7, and 8, the nim sum is 5 =
6+27+28=29. If one now “nim adds” this value to each of the three piles
in turn, one sees that in the case of the third pile, the result is a reduction,
namely, 8 459 = 1 < 8. The reduction of this pile to one stone, as depicted
in Figure 21.1, is, in fact, the only winning move.

The fact that Bouton's rule actually works in all cases is based on two
significant properties of nim sums of nim configurations:

e for every configuration with positive nim sum, there exists at least
one move that reduces the nim sum to zero.
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+2 7 +2 8 =9

64,9=1526 T4,9=14>7 84,9=1<8

Figure 21.1. The only winning move: take seven stones from the right-hand pile.

e one can never remove stones from a configuration with nim sum zero
and achieve another configuration with nim sum zero (see Note 1 at
the end of the chapter).

Starting from a configuration with positive nim sum, a player can use
these two properties to guarantee that there is always a move that will yield
a nim sum of zero. After the opponent’s move, the player is guaranteed
a configuration with positive nim sum. This continues until the last stone
is removed. Since the configuration of no stones has nim sum zero, such a
configuration cannot be achieved by the opponent.

The special form of Bouton’s formula makes nim a game that is par-
ticularly well suited for programming on a computer. Most programming
languages allow bitwise operations on positive numbers. The nim sum of
two integers a and b can then be calculated by means of

a XOR b= (a OR b) AND (NOT (a AND b)).

It is also easy to realize nim sums in switching circuits. It is thus not sur-
prising that nim was the first game to be played by machine. In 1940, West-
inghouse Corporation presented its “Nimatron” at the New York World’s
Fair.? This machine, which with its countless relays weighed in at over a
ton, could play with a configuration of at most four piles each with at most
seven stones. Another apparatus, this one called “Nimrod,” appeared in

3See E.U. Condon, The Nimatron, American Mathematical Monthly 49, 1942,
pp. 330-332, US-Patent-Nr. 2 215 544. A different machine for playing nim was de-
scribed in Raymond Redheffer, A machine for playing the game Nim, American Math-
ematical Monthly 55, 1948, pp. 343-349.
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1951, and attracted attention by defeating the German economics minister

Ludwig Erhard.*

Chapter Notes

1. The second property is relatively clear. Namely, if one removes stones from

a configuration with pile sizes a, b, c,..., for whicha+2b+2c+2--- =0,
resulting in the configuration a’, b, c, ..., then one has the relation
ar-l-zb-l—zc-l—zw- :a"—}—za—l—za-l—gb-l—gc—kz :a’+2a.

For @’ < a this number is never equal to zero.

To prove the first property, we must prove that in the case
S:ﬂ.+26+26+2"’}0,

at least one of the numbers a +2 s, b +2 5, ¢ +2 s, ... is smaller than the
original pile size a, b, ¢,.... If z denotes the largest power of two less than
or equal to s, then the binary representation of at least one of the pile sizes
has a 1 in the place where z has a 1. If, for example, that is the case for
the first pile, with a stones, then one has

atzs=(a+z2z2)+ta2(s+2z)=(a—2)+2(s—2)<a—z2+s58—z<a.

1Digital computers applied to games, in B, V. Bowden, Faster Than Thought, London
1953, pp. 287, 394 ff.
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Lasker Nim:
Winning Along a Secret Path

There is a variant of nim in which a move consists in either removing
stones from a pile or in dividing a pile of at least two stones into two piles,
not necessarily of equal size. The player who removes the last stone wins.
Is there a simple analysis for this game as there was for nim?

The nim variant that we have just described was invented by Emanuel
Lasker, and it is described in his book on games.! In honor of its inventor,
the game has been given the name Lasker nim.

Lasker also investigated other variants of nim. In doing so, he attempted
to extend to his variants the division of configurations into winning and
losing positions. To do this, a position is evaluated from the perspective of
the player whose turn it is. That is, a configuration is a winning position
if it offers the next player to move a winning strategy. Lasker puts it thus:

If a configuration that we are examining can be brought by a
permissible move into a losing configuration, then the configu-
ration under examination is a winning position. If we cannot
do so, then it is a losing configuration. There is no third choice.

In contrast to chess, it is unnecessary to distinguish the players as white
and black, since their choices of move are the same for a given configuration.

IEmanuel Lasker, Brettspiele der Vélker, Berlin 1931, The nim variant is described
on pp. 183ff.; the first of the following quotations appears on pp. 177f.

174
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Lasker’s idea for analyzing the game consists in creating a new con-
figuration from two that have already been classified by simply laying the
two sets of piles next to each other. He then seeks criteria for the winning
character of a position thus achieved. He makes the following observation:

Again, a losing configuration appended to a winning configu-
ration results in a winning configuration, while a move that
transforms the original winning configuration into a losing con-
figuration also changes the extended configuration into a losing
configuration.

What this means is that one can append a losing configuration to an
arbitrary configuration without changing that configuration’s character.
We are left to consider the situation of two winning positions merged into
a new position. In contrast to the previous situation, here we cannot state
a result unambiguously: for example, the configuration {1,1} composed
of the two winning configurations {1} and {1} is a losing configuration,
while the combined configuration { 1,2 } is a winning configuration. Lasker
comes to the following conclusion:

We see first that two groups of piles can be “equivalent” in that
in every losing configuration in which one group appears, it
can be replaced by the other without altering the win character
of that configuration. Merging two equivalent configurations
results in a losing configuration.

And in fact, the converse of this statement holds as well: two config-
urations are equivalent precisely when merging them results in a losing
configuration (see Note 1 at the end of the chapter). In particular, equiv-
alent configurations always have the same win character. Moreover, all
losing configurations are equivalent to one another, while the totality of
winning configurations can be divided into equivalence classes. Using this
concept of equivalent configurations, Lasker was able to classify a config-
uration by showing its equivalence to a configuration with a particularly
simple structure. Thus for his nim variant, he found the following “prime,”
as he called them, “piles that are not equivalent groups of smaller piles”:
{1}, {2}, {3}, {7} {15}, {31}, and so on. Except for {2}, these are
all numbers that are 1 less than a power of 2. Lasker remarks:

An arbitrary pile is either equivalent to one of these piles or to a
group of these piles. For example, {4} is equivalent to {1,2 };
{5} is equivalent to {1,3}; {6} is equivalent to {2,3}; {8}
is equivalent to {1,2,3 }.
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More extensive configurations such as {1,3,5,8 } can be easily simpli-
fied to {1,3,1,3,1,2,3} and finally to {1,2,3 }. Since from this configura-
tion one can obtain the losing position {1,2,1,2} by dividing the last pile,
the original configuration is a winning configuration. Every configuration
is equivalent to exactly one combination of prime configurations of different
sizes. There are only a few ways to obtain a losing configuration, which is
equivalent, of course, to the empty configuration: if a losing configuration
was to result from a nonempty collection of prime piles of different sizes,
then there would be an equivalence among these piles, and the largest pile
would then not be prime. That is, in grouping prime piles of different sizes
into a configuration, only the empty grouping yields a losing configuration!
For this reason alone, the configuration { 1, 2,3 } investigated above cannot
be a losing configuration. Therefore, once one has determined all the prime
piles of a nim variant, that game can be analyzed like standard nim:

e every pile in a configuration is first replaced by equivalent prime piles.

e once this has heen done, a losing position is present only if every
prime pile occurs an even number of times.

The method thus described is not made explicit in Lasker’s book. Al-
though one obtains usable results, it is much more complex than Bouton’s
criterion for standard nim, whose prime pile sizes are powers of two. An
improvement was obtained in 1935 by Roland Sprague (1894-1967), and
independently in 1939 by Patrick Michael Grundy.? Their principal con-
tribution beyond what Lasker did was to find a connection between gen-
eralized and standard versions of nim. It turns out that the variations of
nim affect more the appearance of the game to the players than the under-
lying mathematical substance. In the theory developed over the years, the
games investigated by Sprague and Grundy have become known as impar-
tial games, in which the last player to move wins. The following properties
are assumed for these games:

e the game is a two-person game with perfect information with no
elements of randomness.

e the two players alternate first move with a fixed initial configuration
in each game.

e the available moves for a particular configuration are independent of
which player’s turn it is; thus the name impartial. The configurations

2R. Sprague, Uber mathematische Kampfspiele, Téhuko Mathematical Journal 41,
1935/6, pp. 438—444; P. M. Grundy, Mathematics and games, Eurcka 2, 1939, pp. 6-8,
reprinted in Eureka 27, 1964, pp. 9-11.
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derived from a given configuration are called that configuration’s suc-
cessors.

e the player who makes the last move is the winner.

e the game is finite, in that it always ends after a finite number of
moves. It is also frequently required that the number of possible
moves from every configuration be finite.

e if several positions G, H,L,... are assembled into a new paosition,
then this occurs in the form of a disjunctive sum G+ H + L + ---.
That is, confronted with such a configuration, a player moves hy
selecting one of the components G, H, L,... and moving under the
rules applicable to that component.

Disjunctive sums can be formed from configurations in any number
of nim variants. Thus Lasker’s notion of equivalence can be extended to
arbitrary configurations in the games under consideration here. This has
the advantage that the basic assertions of the theory of Sprague and Grundy
can be formulated rather simply:

In an impartial game in which the last player to move wins,
every configuration is equivalent to a pile of standard nim.

The size of this pile is called the Grundy value. It serves to characterize
the underlying position. The Grundy value has two characteristics that
simplify its calculation:

¢ the Grundy value of a position is equal to the smallest natural number
that does not occur among the Grundy values of its successors (see
Note 2 at the end of the chapter).

e the Grundy value of a disjunctive sum of configurations is equal to
the nim sum of the Grundy values of the configuration’s components
(see Note 2 at the end of the chapter).

To win, a player must always attempt to achieve a configuration with
Grundy value 0, for such a position is equivalent to an empty nim pile, so
that the opponent will be faced with a losing configuration. Here, one may
use the two properties that we have formulated for determining the Grundy
value in two steps: on the one hand, the sequence of Grundy values g(0),
g(1), g(2), ... is calculated for the configurations that consist of a single
pile. On the other hand, using nim addition, this result can be used to
determine the Grundy value of configurations with more than one pile. In
our example of Lasker nim, the process looks like this:
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The empty pile has no successors, and so its Grundy value is the small-
est natural number, namely, ¢g(0) = 0. For the Grundy value of a pile
containing a single stone, the value 0, as the Grundy value of the empty
position, must be excluded, so that one has the Grundy value g(1) = 1. If
the pile encompasses two stones, then in a single turn, either one or two
stones can be taken, or the pile can be split in two. The successors have
the Grundy values 1, 0, and 1 +5 1 = 0, which yields the Grundy value
2 for the two-stone pile. A pile of three stones offers four possible moves:
to remove one, two, or three stones, or to divide the pile. This leads to
successors with Grundy values 2, 1, 0, and 1 +3 2 = 3, so that the three
stones have a Grundy value of g(3) = 4. In general, the Grundy values for
Lasker nim satisfy the recursion relation

N-{g(0),91),...,9(n - 1)}
~{g(1) +29(n—1),9(2) +29(n—2),...} )

‘We collect some of the results of this formula in Table 22.1.

The Grundy values in Table 22.1 are periodic: the Grundy value of a
pile is larger by four than the Grundy value of a pile that is smaller by four
stones; that is, g(n) = g(n — 4) + 4. We demonstrate how to find a win-
ning position using these Grundy values using the example configuration
{1,3,5,8}. Its Grundy value is the nim sum of the Grundy values of the
individual piles, namely,

g(n) = min (

(1) +29(3) +29(5) +29(8) =1 +24 +25427=T.

A winning move for the given position in Lasker nim is seen to he
analogous to such a move for the position {1,4,5 7} in standard nim.
There are three such moves:

¢ based on the winning move in standard nimof { 1,4,5,7 } to {1, 3,5, 7 },
the three stones constituting the second pile are split into two piles
of sizes 1 and 2, to realize the Grundy value 3 (see Figure 22.1).

¢ based on the winning move in standard nimof { 1,4,5,7 } to { 1,4,2, 7 },
three stones are removed from the third pile, of size 5, so that with
the remainder of 2 stones, the Grundy value 2 is achieved.

¢ based on the winning move in standard nimof { 1,4,5,7 } to { 1,4,5,0 },
the fourth pile is removed completely.

This example demonstrates that disjunctive variants of an impartial
game can be won almost as easily as in standard nim. However, someone
uninitiated into the winning principle would be unlikely to figure it out.
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Size of Pile Grundy Value
n g(n)

0 0
1 1
2 2
3 4
- 3
3 5
6 6
T 8
8 7
9 9
10 10
11 12
12 11

Table 22.1. Grundy values for Lasker nim.

Lasker nim Standard nim
UUU§% ===
_ >

o(1)=1 g(8)=4 g(5)=5 g(8) = 1 4 J/5 7

&— o g
""" SE-_sE
3 — 3 £33 £33
g( }+gg( )=3 3

Figure 22.1. Lasker nim: first, the configuration is transformed into an equivalent
configuration in standard nim; the winning move found in the standard nim configuration
is then transformed back to Lasker nim.
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Nim Variants en Masse

Of course, in addition to Lasker nim, there are many other
variants of nim that one can imagine. We mention two of them
here:

e in bowling nim,? either one or two stones may be removed
from a pile. Thereafter, the pile can be divided.

e in subtraction games, certain positive integers s;,5s,..., s,
are specified, indicating how many stones may be removed
from a pile on a given turn. Piles with fewer than the
smallest of these numbers may be removed completely,

since there would otherwise be no legal move for that pile.

These and other nim variants, including the original nim and
Lasker nim, can be categorized in a very large class of nim
games whose rules can be encoded in the form of a sequence
of integers. In such a sequence AgA; A;As. .., the number A;
gives information about the circumstances in which, for the
nim variant in question, ¢ stones may be removed from a pile.
This is allowed precisely when the reduced pile is then divided
into t piles, where the number ¢ > 0 must satisfy the condition
2t 44 A; > 0. If the required number of piles is not achievable
by division, it is not permitted to remove i stones:

e (.333...is the code for standard nim, where corresponding
to the numbers 3 = 2% 4 2%, an arbitrary number of stones
may be removed, so that £ = 0 or ¢t = 1 pile remains.

e (.77, short for 0.77000 ..., encodes bowling nim. The first
two digits 7 = 22 + 2! 4 2V indicate that only one or two
stones may be removed, while the remaining pile may then
be divided so that t = 0, 1, or 2 piles result.

e 4.333... is the code for Lasker nim. Moves are as in stan-
dard nim, except that a move of removing no stones is
permissible if in the process, ¢ = 2 piles result.

3The name is derived from the fact that this game can be seen as a variant of bowling:
one lines up the pins in a row, so that on a single throw, one or two pins can be hit.
Pins standing next to one another without a gap constitute a “pile.”
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e 0.03003 stands for a special subtraction game in which
either two or five stones may be removed, and as a result,
either t = 0 or t = 1 pile results. In particular, piles with
only a single stone can no longer be drawn from.

Nim codes of this type were discovered in 1955 by Richard Guy
and Cedric Smith.* The nim variants thus created, sometimes
called octal games, were used by Guy and Smith in their in-
vestigations of Grundy values. Using the EDSAC computer, a
significant computer at the time, they calculated the sequence
of Grundy values g(0),g(1),g(2),... and looked for patterns.
For example, they found for the game 0.137, known as Daw-
son’s chess,” a period of length 34, namely, the Grundy values

811203110332244559330113021104537 4,

where at the beginning, the values g(0) = g(14) = ¢(34) = 0
and g(16) = ¢(17) = g(51) = 2 deviate from the pattern of pe-
riodicity. Much more complex is the game 0.16, whose Grundy
values, starting from 105350, exhibit a period of 149450.5 In
addition to nim games with periodic Grundy values, among
which is bowling nim, with a period length 12 beginning with
g(72)," there are also variants in which the growth of the Grundy
values is periodic, as we saw with the example of Lasker nim.
If the prescribed set of pile reductions { s1, s2,...} for a sub-
traction game is finite, then its sequence of Grundy values is
periodic. Moreover, they possess some rather interesting addi-
tional properities, even in the infintite case, as discovered by
Ferguson in 1974:%

¢ g(n) = 1 precisely when g(n — s;) = 0 for the smallest
number s; in the permissible set { 51, s2,... }.

e in the case g(n) = 0 with n > s;, there is a permissible
reduction s with g(n — s) = 1.

4Richard K. Guy, Cedric A.B. Smith, The g-values of various games, Proceedings
of the Cambridge Philosophical Society 52, 1956, pp. 514-526. See also Richard K.
Guy, Fair Game, Arlington 1989; John H. Conway, On Numbers and Games, Natick,
MA 2002, Sections 11, 12; E. Berlekamp, J. Conway, R. Guy, Winning Ways, second
edition, Natick, MA 2001, volume 1, Chapters 2-4.

5The game is discussed in volume 1 of Winning Ways.

SA. Gangolli, T. Plambeck, A note on periodicity on some octal games, International
Journal of Game Theory 18, 1989, pp. 311-320.

TA table of all Grundy values for bowling nim will be given in Chapter 26.

8T, 8. Ferguson, On sums of graph games with last player losing, International Jour-
nal of Game Theory 3, 1974, pp. 159-167.
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The second property, which can be derived from the first (see
Note 4 at the end of the chapter), was used by Ferguson to
investigate the misére version, in which the last player to move
loses. We shall return to this issue in Chapter 26.

/‘*w'

Chapter Notes

1.

A proof of this statement is not particularly difficult: let us begin with the
two equivalent configurations { G} and { H }. Without changing the win
character of the combined configuration { G, H }, we may replace H by its
equivalent G. The resulting configuration { G, G } is a losing configuration,
since the second player will be able to imitate the moves of the first player.
Conversely, if the combined configuration { &, H } is a losing configuration,
then we need to show that for every configuration { L }, the two combined
configurations { G, L } and { H, L } have the same win character. That this
is indeed so can be seen by considering the configuration { G, G, H, L }: this
arises from { G, L } by adjoining the losing configuration { G, H } and from
{ H,L} by adjoining the losing configuration { G, G }.

A proof can be derived from the following considerations: if the suc-
cessors (G1,Ga,... of a configuration G are equivalent to nim piles of
sizes mi,ma, ..., then we must show that the disjunctive sum G + *m
is a losing configuration, where +m represents the nim pile with m =
min (M — {m1, ma,...}) stones. This is so, because every possible suc-
cessor is seen to be a winning configuration: if one draws from the left
component of G + #m, then the result is a configuration that is equivalent
to the position *m; +*m for some index 7. Since m; # m, this is a winning
position. On the other hand, if one draws from the right component of
G + »m, then this leads to a configuration G + *n for some integer n < m.
Since m is the smallest natural number not among m;,ma, ..., it follows
that G + #n is one of the configurations G + *m,. This is a winning con-
figuration, since one can attain a losing configuration after the move to
G + *mi;.

. If m and n are the Grundy values of two configurations G and H, then

G + «m and H + »n are losing configurations. Moreover, Bouton’s theory
tells us that the standard nim configuration comprising three piles »m +
*n —+ *(m +2n) is a losing configuration. It therefore follows that G + H +
*m + n and hence G + H + «(m +2 n) are losing configurations.

. The first statement can be proved in both directions by complete induction,

where the beginning of the induction is clear due to g(0) = g(1) = --- =
gls1 — 1) =0and g(s:) = 1.
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In the case g(n) = 1, we have for all permissible reductions the inequality
g(n —si) # 1 (provided that n— si £ 0). By the induction hypothesis, we
thus always have g(n — si. — s1) # 0 (provided that n — s, — s; # 0), from
which it follows that g(n — s1) = 0.

Converserly, if g(n—s,) = 0, then for all permissible reductions s, we have
the inequality g(n — s; — 8 ) # 0 (provided that n —s; — s < 0). From the
induction hypothesis, we obtain g(n — s, # 1 (provided that n — s, £ 0;
the cases 0 < n — sk < s1 are clear) for all reductions sx. Together with
the initial condition g(n — s1) = 0, it finally follows that g(n) = 1.

We now come to the second assertion, in which we begin with a number
n > s with g(n) = 0. In particular, in such a case, we have g(n — s1) # 0,
which again has as a consequence the existence of a reduction s, with
g(n — 81 — 8;) = 0. From what we have already proved, we may conclude
that g(n — sx) = 1.
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Black-and-White Nim:
To Each His (or Her) Own

Black-and-white nim is played with towers of black and white stones. A
turn consists in a player choosing a stone of his own color and removing
it together with all the stones lying above it from the pile. The player who
makes the last move wins. How can one find a winning move, for example,
from the configuration shown in Figure 23.17

Black-and-white nim, which is a simplified version of the game hackenbush
that was studied by Berlekamp, Conway, and Guy,' has a significant char-
acteristic that differentiates it from the nim variants that we have been
investigating thus far: like most board games, it is not impartial; that is,
the available moves depend on whose turn it is. Thus, for example, white’s
moves from the configuration of Figure 23.1, shown on the left-hand side of
Figure 23.2, differ from those of black, four of whose seven possible moves
appear on the right-hand side (the remaining three are at best as favorable

as the second move from the top).

Figure 23.1. A configuration in black-and-white nim.

1

1See the bibliography at the end of the chapter.
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Figure 23.2. Black and white do not have the same moves in the configuration of

Figure 23.1. White's moves are shown on the left, four of black’s seven moves on the

right.

Aside from the fact that the moves in a given configuration may be
different for the two players, the assumptions of the previous chapter are
in force. Therefore, for the general part of our investigations, we assume
the following:

the game is a two-person game with perfect information without ran-
dom effects.

the players alternate first move from a fixed opening configuration.
the player to make the last move wins.

the game is finite; that is, it always ends in a finite number of moves.
It is generally also required that the number of possible moves on
each turn be finite.

if several configurations G, H, L, ... are assembled into a larger con-
figuration, then this occurs in the form of a disjunctive sum G + H +
L+ ---. A player moves in such a sum configuration by choosing
a component G, H, L, ... and making a permissible move from that
component.

Such games were first studied systematically in the 1970s by John Hor-
ton Conway, who extended the theory of nim to nonimpartial games, ob-
taining a large number of results that are interesting from both the gaming
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and mathematical points of view. It later became clear that some aspects
of Conway’s results had been discovered earlier, in 1953 by John Milnor
(1931- ) and in 1959 by Olof Hanner (1922 ),2 whose findings were scarcely
noticed at the time. As with nim, it is the configurations that are the ac-
tual objects of study. In the case of nonimpartial games, this has the result
that there are always two games to be studied that have a given initial
configuration: the version in which white plays first, and the version in
which black plays first. One seeks winning strategies for both games: who
can win, and how?

As with the impartial nim variants, the generalized theory, often called
combinatorial game theory, deals principally with finding winning strate-
gies for configurations given by disjunctive sums by analyzing the sums’
components. This is accomplished in two steps: first, the components of a
disjunctive sum are replaced by equivalent but less complicated configura-
tions. Then, one attempts to determine for a disjunctive sum the options
for winning, calculating them with a mathematical formula if possible.

If losing configurations can be determined for a disjunctive sum in an
impartial game, then for a nonimpartial game, the winning moves for both
variants—with white and black each having the first move—must be con-
sidered. This leads to the notion of a null configuration, a configuration in
which the player to go second has a winning strategy:

Given a null configuration H, a player who as first or second to
move has a winning strategy for a configuration ¢ can also win
if the game starts in configuration &' + H (provided that the
player to move first remains the same). That is, with optimal
play, the addition of a null configuration does not alter the
outcome of the game.

We can see this by quoting Lasker’s work on nim almost word for word:
if the second player to move has a winning strategy from configuration
(7, then he can also win from initial configuration G + H by countering
every move of the first player in one of the two components as if the other
one was not present. On the other hand, if the first player has a winning
strategy for configuration G, then he will also win if the game begins in
configuration G+ H by first choosing the winning move from configuration
G, thereby arriving at the situation that we have just analyzed.

A trivial example of a null configuration is the one denoted by 0, in
which neither player can move. Additional examples of null configurations

2John Milnor, Sums of positional games: in H. W. Kuhn, A. W. Tucker (eds.),
Contributions to the Theory of Games II, Annals of Mathematics Studies 28, 1953,
pp. 291-301; Olof Hanner, Mean play of sums of positional games, Pacific Journal of
Mathematics 9, 1959, pp. 81-89.
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A configuration of

black-and-white nim ... ... and its inverse
configuration
1 1

—
- g —

together form a null configuration!

Figure 23.3. A null configuration formed from a given configuration and its inverse.

can be obtained by taking the sum of an arbitrary configuration G and
its inverse configuration —G. This is the configuration in which the two
players, beginning in configuration G, switch roles; that is, the possible
moves remain unchanged, but white makes the moves that black would
make and vice versa. In the case of black-and-white nim, this can be
achieved simply by exchanging the colors of the stones. If one forms the
sum G+ (—G), then this is a null configuration, since the second player can
mimic the moves of the first player in the other component. This situation
is depicted in Figure 23.3.

A more interesting example of a null configuration is the following three

towers:
s

Whoever is to move is in trouble. If white goes first, then she has only
one move, up to symmetry, namely, to the configuration:

.

Black can now win by removing the top stone from the left-hand tower.
On the other hand, if black goes first, his best move is to create the con-
figuration:

st

But if white now removes the middle tower, black loses.

Null configurations like that in this example, consisting of a sum of
configurations, can often be used to simplify a given configuration. Thus if
H + L is a null configuration, then in every sum of configurations, H and
— L are interchangeable, in that the winning possibilities of the players are
not altered. That is, if G is an arbitrary configuration, then G + (—L) has
the same winning possibilities as G + (—L) + (H + L), and thus the same
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as G + H. Thus the configurations H and —L are equally favorable. As in
the case of impartial games, they are called egquivalent, and the notation
H = —L is used.

We shall now examine the configuration

B ososos

to see how equivalent configurations can be used to simplify a given con-

figuration. Without changing the outcomes for the two players, the towers
of a single color can be replaced by a single stone. Moreover, pairs of one
white and one black stone can be removed, since together they form a null
configuration. Finally, two of the right-hand towers can be replaced by a
single stone. We can do all of this because of the following equivalences:

C_ ooy — ()

1)
l
l
l
l

=C__ > > > HH:C__')

Once all of the simplifications have been carried out, we are left with

the single tower:

Thus white wins whether she moves first or second.

If one is prepared to invest a certain amount of effort, almost every
configuration of black-and-white nim can be analyzed in this way. Indeed,
we have the following theorem:

Every configuration of black-and-white nim is equivalent to a
sum of towers of the following form:

=

By Wy Wy Wy W Wy

where we note that W; = W, + W,

If we express the individual towers of a given configuration as a sum
of towers from the collection just presented, then the sum can be easily
analyzed. Thus for the configuration of Figure 23.1, considered at the start
of this chapter, we arrive at
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L) )
-—
- W, — B+ Wy + Ws

= W,

and so finally,
H"’]_ + H"’:i + B{) + I’VQ + I’V; = -—I’V4.

Therefore, black can win whether he goes first or second.

Although we have solved our initial problem, instead of resting on our
laurels, let us look more closely into two points that arose in our con-
siderations. First, we should look more closely at the equivalence W; =
Wii1 + Wit And then we should close an even bigger gap in our ex-
planation, occurring in the first step, in which each individual tower was
replaced by a sum of towers. In principle, it is possible to establish a pre-
sumed equivalence of two configurations G and H by proving the difference
G — H to be equivalent to the null configuration by an analysis of moves.
Since this is not very efficient, we shall develop a simpler procedure in the
remainder of the chapter: this will allow us to reduce an arbitrary config-
uration of black-and-white nim to a simpler configuration involving sums
of configurations By, Wy, Wy, Wy, W3, ..., given that such representations
already exist for all configurations reachable in a single move,

Since in an impartial game it suffices simply to distingnish winning
configurations from losing ones, in the case of nonimpartial games, we may
define four cases, depending on the winning chances of the players, since
each configuration corresponds to two possible games. One of the four
classes is the previously analyzed null configuration:

e a configuration is called positive if white has a winning strategy re-
gardless of who goes first.

e a configuration is called negative if black has a winning strategy re-
gardless of who moves first.

e a configuration is called a null configuration if the second player has
a winning strategy.

e a configuration is called fuzzy if the first player has a winning strategy.

That every configuration falls in one of the four classes follows directly
from Zermelo's theorem. Figure 23.4 shows simple examples of configura-
tions for each of the four classes. Since there are no fuzzy configurations in
black-and-white nim, we offer an example from standard nim, whose stone
we have drawn half black, half white, to indicate that either player may
take the stone.
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Configuration [ L] D [ _alb]

Winning white black the second the first
strategy for... player player
Configuration positive negative null configuration fuzzy
type G>0 G=<0 I G=0 I G0

Figure 23.4. The four win classes, with an example configuration for each.

The notation that we have used in Figure 23.4 can be interpreted along
the lines of the way we have interpreted the “=" sign, namely, as a way
of comparing a conficuration G with the end configuration 0. If we extend
this idea to the comparison of two arbitrary configurations G and H, we
can make an even finer distinction among configurations. We let G > H,
G = H, G < H, and G| H denote the corresponding statement with
respect to the configuration G + (—H) (which we shall write as G — H)
in relation to the end configuration (. How are these relationships to be

interpreted in practice? Here is a simple example: for the configurations

G:gmldH=§W'ehaveG>H,
foiiand

L d
since G — H = - - ().

The configurations G and H are both positive, and so they offer white a
winning strategy whether she moves first or second. Nonetheless, in certain
special situations, configuration GG can be more favorable for white than H,
namely, when they appear as components of a disjunctive sum. Thus, for

L = «am®» we have G+ L >0, but H + L = 0.

That is, white can win from configuration &G + L, but that is not the
case for configuration H + L.

Moreover, we may interpret combined comparisons such as G = 0, that
is, G > 0 or G = 0, strategically as follows:

e (¢ > 0: white to move second has a winning strategy.

e (G < (0: black to move second has a winning strategy.

G || > 0: white to move first has a winning strategy.

G < || 0: black to move first has a winning strategy.
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If we leave aside for a moment the somewhat unusual-looking relation
G| H as the fourth alternative after G > H, G < H, and G = H, we can
manipulate these symbols more or less the way we do in other mathematical
contexts. Thus, for example, the following laws are easy to prove:

¢ a relation such as G > H retains its validity by the addition to one
side of a null configuration. That is, G + L > H follows from G > H.

e the sum of two positive configurations is again positive. That is, if
G>0and H >0, then G+ H = 0.

e the “greater than” relation is transitive: for three configurations sat-
isfying G > H and H > L, it follows that G > L.

With the help of the comparison relations and its properties that we
have just described, a configuration that occurs as a disjunctive sum can
often be analyzed “locally,” that is, component by component. If we wish
to compare the components G and H of a configuration, then we have
merely to investigate the difference configuration ¢ — H. The following
table shows how the relations ¢ = H, ¢ = H, and ¢ < H operate in
disjunctive sums. The table compares the configurations G + L and H + L
for an arbitrary configuration L:

| Whoever Moves First, for Every Configuration L ...

G = H | ...white finds G + L just as favorable as H + L.
G = H | ...white finds G+ L at least as favorable as H + L.
G < H | ...white finds i + L at least as favorable as G + L.

The converses of the three statements hold as well, which one can see at
once if one substitutes the configuration —H for L. In the remaining cases,
that is, when the relation G || H holds, one can make no blanket statement
as to whether G + L or H + L is more favorable for white. That depends
on the structure of L and on who moves first.

There is good reason why the symbols “=" “<” “» 7 @7 Um0 wg®
—,” and “0” can be used in the familiar way: many configurations, and in
particular, all configurations of black-and-white nim, can be represented as
numbers. Thus, the configurations By, Wy, Wi, Wa, W3, ... correspond
to the numbers —1, 1, 1/2, 1/4, 1/8, ete. The fact that the opera-
tions on configurations agree with those on the associated numbers and
are therefore “compatible”® with one another is a result of the equalities
Wi = Wiy + Wiy and By = —W;. One may now interpret the value of

@

3The reader who knows what a homomorphism is may have noticed that we have
here a homomorphism between ordered groups.
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a configuration as the degree of advantage that white has over black. An
advantage of 2 in the configuration

= S-

means that white can move two turns longer than black can. Of course, an
advantage of —1/4 of a move as in the configuration

—

defies such a simple interpretation. Nevertheless, even a value like —1/4
can be interpreted indirectly as a degree of advantage. To do this, simply
add four such towers together to achieve a configuration equivalent to a
single black stone.

Even configurations that cannot be represented by a number can satisfy
size relations. For example, the relation

O @D

holds for the nim pile in standard nim, which, like all winning configurations
in impartial nim games, is not equivalent to any number. In particular, the
Grundy values of nim can never be interchanged with the numbers that we
have just described.

To make possible the investigation of configurations on a more abstract
level, one frequently writes configurations in the form

({G.H,..}{P.Q,...}).

or simply

{G.H,...|P,Q,...}

for short.

Here, G, H,... and P,(Q),... are configurations, in particular, those
from which white, respectively black, can move. See “Conway’s Universe
of Games” for a brief look at how abstractly one can “play” using these
ideas.

Whenever possible, in what follows, we will represent configurations
as simply as we can. Since for both players, equivalent configurations
are in general equally favorable, that is, as components of a disjunctive
sum, we shall usually not distinguish between equivalent configurations.
Configurations that correspond to a nmumber—and this is something that
we have already done with the end configuration 0—will simply be denoted
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by that number. Thus instead of

—

= (==

where the horizontal line indicates the empty end configuration, we simply

write L )
——=4¢ —=,—1|0 ;.
{51

Although the advantages of this notation over the tried and true

. _ 1
=0 {0} =1 {1lf}=2 {[0} =-1 {0]l}=3,
may not be apparent, the situation changes dramatically when the rela-
tionships become more complicated. This is particularly true for the two
following “calculation rules.” The first of these concerns dominated move
options:

A move that is less advantageous in comparison to other moves
can be removed from a configuration. For example, if white can
choose between moves to configuration GG or configuration H,
for which the relation & < H holds, then the option to move
to G can be dispensed with:

(G.H,...|P,..Y={H,...|P..}.

It is almost self-evident that disadvantageous moves can be omitted
(see Note 1 at the end of the chapter). As an example, we will simplify the
configuration that consists of the tower W;; in black-and-white nim. We
may delete all of black’s moves except for the most favorable one:

]1 1 1 V=L 1
9i’9i—17"""" = 2i-1 [

One can also find similar simple representations for other fractions, such
as 3/4. Beginning with the disjunctive sum

3 1 1 1
—=-+4+-={0]1 =0
1-311 {0] }+{0‘2}

two options present themselves for each player, namely,

3 11 11 1
== = = L= =+ = ¢,
1 {0+4_2+0‘ +4_2+2}_

1 ﬁ;w{[

9i+1
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which, after the dominated move options are deleted, yields the represen-

{3}

Similarly, every other fraction whose denominator is a power of 2 can be
represented by a pair of move options. For integers n and k with n = 0,

we have
k+1
2n '

Furthermore, this equation, together with the equations

tation

2k+1_{k

2n+1 - 2_‘!1

0={l}, n+l={n|}, —(n+1)={|-n},

forms a complete set of “standard representations” of the numbers that
appear in black-and-white nim. In transforming a given configuration into
such a form, we may make use of the following simplicity theorem:

If a number is representable as a configuration in the form
{ G| H } with numbers G < H, then this number is also repre-
sentable by all configurations { P | Q } whose move options P
and @ satisfy the conditions G < P < ||[{G|H} <||Q < H.

More important than this abstract formulation and the proof of the
simplicity theorem (see Note 2 at the end of the chapter) is its most frequent
application, in which a configuration { P | Q@ } with P < @ is equivalent
to the “simplest” number s that lies between P and (), that is, for which
P < s < @ holds. Here a number is by definition simpler, the earlier it
comes in the following sequence:

3 3

0, 1, -1, 2, -2, ..., = --l, - ==, ... 1
S S ' 22 2 4

1
YRR

To make clear the connection to the abstract version of the simplicity
theorem, we shall compare a given configuration { P | @ } with the standard
representation s = { G | H }. For example,

3
(-1
9 |2 1 i 1 9 3 29
{E 2}:{;‘1}:—, since §<_E<Z<3_251;

1

{{0|0}‘2}={-1|1}=0, since  —1

: 3
={-2|0}= -1, since -2 < —E <=-l<—-—=<10
2 4

=lreN R
S

[
.

[

1
{olo}fo<3 <1




Combinatorial Games 195

{or} {01} %

1

1
2

Figure 23.5. Stepwise calculation of a black-and-white nim tower.

Once again, this time in other words: if a number appears in the form of a
configuration, then this number also appears even when the move options
of both players or of one player improve only slightly. In addition, for
white in particular, such moves are allowed that are smaller than the given
number, and for black, such moves that are greater than this number.

With these two instruments at our disposal, we can now investigate
arbitrary towers in black-and-white nim. For example, to calculate the
number associated with the tower on the right-hand side of Figure 23.5, we
go through all towers that can result from the tower under consideration.

There is thus an efficient procedure for carrying out an analysis of black-
and-white nim:

e if the numerical values that can arise from all possible moves are
known, then the numerical value of the configuration is known as a
result of the simplicity theorem.

e if a given configuration is represented as a disjunctive sum, the pro-
cedure needs to be applied only to the individual components, and
then the values found for the individual components are added.

Conway’s Universe of Games

In the sense of the definition established by Conway, for each
configuration,* we are dealing with a pair of elements from two
sets, each containing exclusively configurations. The reflexivity
inherent in the definition is by no means as nonsensical as one
might think at first: as the first configuration, the end con-
figuration, denoted by 0, arises directly from “nothing,” that

4For Conway, the notions of configuration and game are equivalent. Here, however,
the word game is used in the game-theoretic sense, so that a configuration corresponds
to two games, one with white moving first, and the other with black moving first.
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is, solely in reference to the empty set @, via the construction
(@, @). In the next step, one obtains three additional configu-
rations, namely,

1=({0},2), -1=(2,{0}), *=({0}{0})

The last of these, the configuration denoted by *, corresponds to
a nim pile with a single stone. The nim pile of size 2, denoted by
*2, arises in the next step, in which, among others, the following
configurations arise. The usual notation as well as the actual
definitions are used, which are abbreviated as {...|...}:"

2= {1]},-2={|-1},5={0|1},~; = {-1]0},
t={0]+}l={*x|0}, £1={1|-1},%2={0,%]0,%}.

For a configuration G = (G1,G2), we define the inverse config-
uration —G formally by

~G=({-G"|G"€G:},{-G'| G’ € G1}),

and together with an additional configuration H = (Hy, Hs),
the sum G + H is taken to mean

{G'+H|GeG }u{G+H |H € H},
{G"+H|G" €Gy}U{G+H' |H" € Hy}).

The order relations can also be explained without reference to
the existence of a game or even the notion of winning. By de-
finition, G = 0 holds precisely when there is no configuration
G" € Gy with G"” < 0. Analogously, G < 0 is defined by there
being no configuration G’ € G, with G’ = 0. By combining
these two relations, it is possible to define the relations “>.”
“ ™ 4= and “||.” For example, by definition, G || H is satis-
fied when neither G+ (—H) = 0 nor G + (—H) < 0 holds.

Not all configurations are numbers. For example, the configu-
rations *, T, |, =1, and %2 appearing above are not numbers.
However, for every number there is a configuration. More on
this can be found in “Conway’s Universe of Numbers.”

5A complete investigation of the configurations generated in this and the following
step can be found in David Moews, Sums of games born on days 2 and 3, Theoretical

Computer Science 91, 1991, pp. 119-128.
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Conway's Universe of Numbers

Conway’s definition of configuration can be restricted in a way
that all configurations generated can be interpreted as numbers.
In particular, the definition encompasses all real numbers. This
definition is that a number is a configuration G = (G1,G2) in
which the sets G and G2 contain numbers exclusively. More-
over, for none of these numbers G' € G; and G € G, is the
relation G" < G" allowed to hold. With addition, equality, and
order relations as already defined for general configurations and
an analogously defined multiplication, a class® of numbers arises
that forms a totally ordered field. In particular, two numbers G
and H, in contrast to two configurations, may always be com-
pared as to size; that is, one of the following relations always
holds: G > H,G< H,G=H.

It is clear that all numbers are configurations. Conversely, how-
ever, such configurations as #, T, |, and % + 1 are not encom-
passed by the numerical definition, and are therefore not num-
bers in the formal sense. Included, however, are all real num-
bers, including some that we have not met in black-and-white
nim, such as 2/3, V2, and 7. They are represented by infinite
sets of “move options.” For example,

2 11 11 1 1 2 1
512373 st =o+

1 1 2
2’2 82 8 32777722 8’2+8+32"” '
for which there is a tower in a version of black-and-white nim
that allows infinite towers:

In addition, some rather bizarre numbers can be constructed,
such as infinitely large numbers like

w=1{0,1,2,3,... |}

%In the sense of naive set theory, one may consider a class to be simply a set. However,
such a point of view leads to logical contradictions, such as in the construction of the
set of all sets, since in Conway’s sense there are simply “too many” numbers.
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and even
w+1=1{0,1,23,...,w|}

as well as infinitely small numbers like

L [, 111
W LR

We may agree with Leopold Kronecker (1823-1891), who re-
marked in 1886, “The integers were created by God; all else is
the work of Man.” Or in the words of Donald Knuth, of course
not to be taken seriously:’

In the beginning, everything was void, and J.H. W. H.
Conway began to create numbers. Conway said, “Let
there be two rules which bring forth all numbers large
and small. This shall be the first rule: Every number
corresponds to two sets of previously created num-
bers, such that no member of the left set is greater
than or equal to any member of the right set. And
the second rule shall be this: One number is less than
or equal to another number if and only if no member
of the first number’s left set is greater than or equal
to the second number, and no member of the second
number’s right set is less than or equal to the first
number.”

And Conway examined these two rules he had made,
and behold! they were very good.

From a mathematical point of view, Conway’s approach is note-
worthy in that he contrives to accomplish in a single step what is
usually a multistep process of constructing sets of numbers. At
the same time, his definition is extremely multifaceted. Thus,
on the one hand, one can find the analogues to the construction
of the natural numbers

0=2,1={2}, 2={2,{2}}. 3= {2.{2}.{2,{2}}}.

and so on, as proposed in 1923 by the then 19-year-old John
von Neumann. On the other hand, the definition also contains a
generalization of the Dedekind cuts, special pairs taken from two

"Donald E. Knuth, Surreal Numbers, Reading, MA 1974. In this book, Conway’s

ideas were popularized, while being made mathematically precise.
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sets of fractions. Their discoverer, Richard Dedekind (1831-
1916), used such cuts, for example,

{zeQ|a?<2}, {zecQ|a?>2},

to define the real numbers formally for the first time, using the
rational numbers as a basis. Finally, we note that Conway also
defines the calculational and comparison operators for all types
of numbers, including the infinitely large and infinitely small.
For more details on this extensive theory, the reader is directed
to the wider literature.®

Chapter Notes

1. Nonetheless, it behooves us, at least once, to convince ourselves formally

of the rightness of this assertion. We must show, then, using the notation
described in “Conway’s Universe of Games,” that

{G.,H,...|P,..}+{-P,...|—H,...} =0,

that is, that the player to move second can always win. If white moves
first and moves to configuration  in the first component, black can reply
with a move to configuration G — H < 0, which leads to victory for black.
Every other opening move, whether by white or by black, can be countered
by the complementary move in the other component. Thereby, a null
configuration can always be achieved that ensures victory to the second
player.

2. To prove the simplicity theorem, we must show that { G | H }4+{-Q | =P}

is a null configuration. By symmetry, it suffices to find a winning strategy
for the second player white in this configuration: if black plays to the
configuration H+{ —@ | —P }, then white counters with a move to H—Q >
0, which ensures a victory just as if black opened to {G | H} — P| > 0.

8The construction of sets of numbers is the topic of the book H.D. Ebbinghaus, H.
Hermes, F. Hirzebruch, et al., Zahlen, Berlin 1983. (In English translation as Numbers,
New York 1991.) In Chapter 12 (“Zahlen und Spiele” (numbers and games)), Hans

Hermes provides an overview of Conway's theory.
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A Game with Dominoes:
Have We Run Out of Space Yet!

Two players alternate placing dominoes on a playing field divided into
squares like a chessboard. Each domino takes up two squares of the board.
White has to place her dominoes vertically on two unoccupied squares, while
black has to place his on two unoccupied horizontal squares. Whoever can
move last in placing a domino on the board is the winner. Who can win,
starting from the position depicted in Figure 24.17

The game that we have just described originated with Géran Andersson,
who communicated it to Martin Gardner for his mathematical games col-
umn in Scientific American.' The impartial variant, in which each player
may place his or her domino either vertically or horizontally, was chris-
tened “cram” by Gardner, and Andersson’s nonimpartial variant became
known as “crosscram.” In the investigations of Conway, Berlekamp, and
Guy mentioned earlier,? the game was called “domineering.”

A particularly interesting aspect of crosscram is that in the course of
a game, disjunctive sums of configurations appear naturally. By this, we
mean that many configurations can be easily understood as sums of simpler
configurations. This is so because it is always only the spaces between the

L Scientific American 1974/2, p. 106, and 1976/9, p. 206. See also Martin Gardner,
Knotted Doughnuts and Other Mathematical Entertainments, New York 1986, Chapter
19.

2E. Berlekamp, J. Conway, R. Guy, Winning Ways for Your Mathematical Plays,
Natick, A K Peters, 2002.
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Figure 24.1. Who wins the domino game?

dominoes already placed that are significant in determining the possibilities
for a win. Therefore, if the totality of unoccupied squares breaks into
several regions that touch at most at the corners, then their disjunctive
sum is equal to the total configuration. That is, a player can play a domino
in only one of the regions. In the problem posed at the beginning of the
chapter, for example, we have the following sum:

Some of the components are known to us already in equivalent form
from black-and-white nim, while the others were referred to at least in
“Conway’s Universe of Games” and “Conway’s Universe of Numbers” at
the end of the previous chapter:

= {]0}=-1
={ 1}={o}=1

={ | }={o]o}==

={ ‘ }:{l|-1}::|:1
={ ‘ + }:{--1|0,1}:--§.
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For the configurations to be investigated, we have altogether
.1 1
—1+1~§+(:tl)+*=—§+*+(:t1),

where the components * = {0 |0} and +£1 = {1 | —1} exhibit a character
that is completely unknown in black-and-white nim. Namely, whereas in
black-and-white nim it is always more favorable to let the opponent move
first, the right of first move in the configuration +1 is very lucrative, which
has great consequences for the total configuration under investigation: if it
is white’s turn, she can move to configuration —1/2+ % +1 = 1/2 + * and
be assured of a win on account of *+ > —1/2. On the other hand, if black
moves first, then he can achieve the configuration —1/2+4%—1 = —3/2+ =
and thereby win.

We can even “calculate” with configurations that are not numbers. For
example, * 4+ * = 0 and (£1) + (£1) = 0. Not so obvious is the equality

+ o o={1[0}+1={2[1}=

The last of the above equalities results from the fact that the addition
of a number to a configuration that is not itself a number shifts the move
options of the position by the amount of the number:

For every number x and every configuration G = { H,... | P,...}
that is not itself a number, the following equality holds:

{H,...|P...}4+z={H+z,...|P+z,...}

Therefore, in the sum of a number and a nonnumber, the move options
of the numerical component can be omitted without changing the chances
of winning for both players. It is thus possible for each player to find an
optimal move within the nonnumerical component, which in our example
is the left component {1 | 0}. Depending on its interpretation, this state-
ment is called either the translation principle or the number avoidance
theorem. The theorem is based on the fact that a move in a numerical
configuration does not improve one’s winning position, though it does so
in a nonnumerical configuration (see Note 1 at the end of the chapter).

In cases in which sums cannot be directly calculated, one may appraise
the effect of the individual components on the winning prospects by com-
paring the components with numbers. For example, for every positive
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number £, no matter how small, one has the inequalities
—£ < * < g,
which can be clarified via the nim positions

< -
§<z:><5

Other examples are

—l4+e<£l <1+¢,
—e<{1|0} <1+e¢,

which are the narrowest limits for such comparisons with numbers. The
configuration * is also tightly linked to the number 0, while an analogous
result holds for the configurations 1 and {1 |0} for the closed intervals
[~1,1] and [0, 1], respectively (see also Figure 24.2). The larger the interval
“interwoven” with a configuration, the more indeterminate the configura-
tion is. By this is meant that the influence of such configurations on the
win profile of a disjunctive sum also depends on the other components.
In such cases, therefore, it no longer suffices to investigate the individual
components in isolation.

How can such comparison intervals be found in general? To answer this
question, let us start with an arbitrary configuration & that is finite, in
the sense that from it, by arbitrary, not necessarily alternating, sequences
of moves by the two players, at most a finite number of configurations
can arise. How does the configuration G behave with respect to the real
numbers?

We assume that configuration & is not itself a number, which we may do,
since numbers are easily compared with every other number. In comparison

-1 0 1
X
here here
X< & X=>%
here here here
X< +1 x|l +1 x> =1
here here here
x<{110} xI1{110} x=>{110}

Figure 24.2. Three configurations compared by size in the set of real numbers.
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with an arbitrary configuration z that is equivalent to a number, we have,
since G = x is impossible, either G > z, G < @, or G || z. Which of these
three relations holds for a given number z can be determined by analyzing
the win profile of the configuration G + (—z), which can be interpreted
as a configuration extended by a handicap. Even if the win profile is not
yet known, the number avoidance theorem gives information on how a
player should move from the handicapped configuration G + (—=z). Since
the configuration G is not a number, the player should restrict his play,
regardless of the value of z, to the G component, that is, to play first
in the configuration G, and to continue to do so in the further course of
the game, in the configurations that follow, until finally, a number arises.
Who wins, then, is clear if the sum of the resulting numerical configuration
and the number = is formed. White is then interested in moving the G
component to as large a number as possible. Conversely, black seeks to
minimize the number that finally arises from the G component. There
thus arises a minimax situation, typical for two-person zero-sum games,
relating to a variable win level, where the variable win levels are surprising
in that the games under investigation are either won or lost.

Therefore, depending on who moves first, every configuration can be
associated with two game values, which can be calculated, due to the al-
ternating right of first move, in a common minimax process. One should
note that this is the perspective from which Milnor investigated disjunc-
tive sums in 1953.% To conform to Conway’s designation of “left” for white
and “right” for black, these values will be called left stop and right stop
and denoted respectively by Ly(G) and Ry(G).* Apart from configura-
tion G, for which we are dealing with numbers and for which we have
Ly(G) = Ry(G) = G, the stop values for games G = {G&’,... | G",...} can

be computed recursively with the help of the two minimax equalities

Lo(G) = max(Ry(G'),...),
Rg (G) == ll’lil’l(L(}(G”), I )

For example, we have

Il

Lo({1]0}) = Ro(1) =1 and Ro({1]0}) = Lg(0)
L(}(*) = R(}(U) =10 and R(}(*) = Lg (0)

0,
0,

Il

3John Milnor, Sums of positional games, in: H. W. Kuhn, A. W. Tucker (eds.),
Contributions to the Theory of Games II, Annals of Mathematics Studies 28, 1953,
Pp. 291-301.

4In the books of Conway and Guy cited above, symbols L(G) and R(G) are defined
that in comparison to Lyp(G) and Ry(G) provide more information, since they also tell
which player reaches the number in question.
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Ry (G) L@
here here here
x<@G xIl G x>G

For both games starting with
configuration G + (-x), ... white player to move black
...has a winning strategy

Figure 24.3. Configurations in comparison to real numbers

and for G = {{5

3h4[{4]1},{3|2}}. we have

Ly(G) = max(Ry({5]31}),4) = max(3,4) = 4,
Ry(G) =min(Lo({4|1}), Lo({3|2}) =min(4,3) = 3.

For the case that white goes first, the left stop Lo(G) forms the bound-
ary between the numbers z for which the advantage in the handicap config-
uration G + (—z) switches between white and black: namely, if z > Lo(G),
then black, going second, has a winning strategy for G + (—); that is, we
have z > G, and therefore x > G. For numbers z with z < Ly(G), on the
other hand, white, moving first, must have a winning strategy for G+ (—x).
Therefore, either z < G or z || G.

If we do the same for the right stop Ro(G), then we obtain qualitatively
the situation depicted in Figure 24.3. In particular, we have Ly(G) =
Ry(G), where the difference Lo(G) — Ro(G) is a measure of how lucrative
it is for a player to make the first move in configuration G.

Aside from the stop values Ro(G) and Lo(G) themselves, every number
x can immediately be compared to the configuration G. Thus, as shown in
Figure 24.3, for every positive number £, no matter how small, we have

Ry(G) —e < G < Lo(G)+¢e, Rol(G)+el>G. Lo(G)—e<|G,

where we may now include the situation in which the configuration G is a
number.

What statements can we now make based on stop values that offer con-
crete advice in practice? The whole matter would be relatively easy to
explain if the stop values of a disjunctive sum could be calculated from
the stop values of the individual components. Alas, that is not the case.
However, as Milnor has already remarked, one can make approximate state-
ments. Thus for two configurations ¢ and H and every positive number
£, we always have G + H < Ly(G) + Lo(H) + 2¢, from which follows the
inequality

L(}(G + H) < L[)(G) + L[)(H)
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Analogously, for the right stop values, we have
Ro(G + H) > R(}(G) + RO(H)

Of much greater interest is the fact that for disjunctive sums, the difference
of the two stop values, that is, Lo(G + H) — Ro(G + H), remains relatively
small. Namely, for each configuration @, one can construct a value dr, (G)
such that it is always true that (see Note 2 at the end of the chapter)

Lo(G + H) — Ro(G + H) < max (d.(G),dr(H)).

In particular, for n-fold disjunctive sums nG = G + - -- + G (n times), the
difference Ly(nG) — Ry(nG) always remains bounded by dr(G). The two
sequences
Lo(n@G) and Ry(nG)
n n

approach closer and closer to each other, and in fact, converge to a com-
mon limit (see Note 3 at the end of the chapter), the mean value m(G) of
configuration . Together with another parameter, called the temperature
and denoted by #(G) (see “The Temperature”), the mean value makes pos-
sible an approximate characterization of the configuration G in disjunctive
sums, in a way similar to that of random wvariables in terms of the expec-
tation and variance: for arbitrary configurations G and H and a positive
number £, we have the relations

m(G) —t(G) — e < G <m(g) +t(G) +e,
m(G + H) = m(G) +m(H),
t(G + H) < max (t(G), t(H)).

That is, within sums, every configuration behaves approximately like a
numerical configuration whose value is equal to the mean value.® The
precision of this approximation depends on the temperature.

Thus the mean value and temperature allow for the approximate or-
dering of a configuration among the real numbers in the form of possible
handicaps, not exactly, to be sure, as is possible with stop values, but with
properties that are relatively easy to deal with. The moderate growth of
temperatures in disjunctive sums is due to the fact that the players move

5The equality m(G+H) = m(G)+m(H) follows without reference to the temperature
from the representation of the mean value as a limit, as well as the chain of inequalities

Fo(nG) + Ro(nH) < Ro(nG + nH) < Lo(nG +nH) < Lo(nG) + La(nH).

The other two equalities follow from an analysis of the thermograph schema used in the
definition of the temperature.




208 24. A Game with Dominoes: Have We Run Out of Space Yet!

alternately, and so the advantage offered by its being one’s move in “hot”
components passes back and forth between the players. Therefore, a ramp-
ing up of the “heat” in the sense of an accumulation of advantages accruing
to the player with the first move does not occur.

As an example of the application of the not-so-simple temperature the-
ory, we investigate the configuration

G={{3|2}|1}+{-2|-3}+{0|-2}+3.

It is not clear how to analyze this configuration directly, due to its com-
putational complexity. However, if we investigate with methods like the
mean values and the temperatures of the four individual configurations, as
described in “The Temperature,” then we obtain the following:

31
HG) < -, =,1,0) =1.
( )_max(‘g_? _U)

It follows that G > m(G) — t(G) — ¢ = 1/4 — ¢ for every positive
number &, and finally, that G > 0. That is, for both games with initial
configuration G, left, a.k.a. white, possesses winning strategies. In many
other cases, a similar analysis is possible, for example, when in the domino
game that we investigated, played on a large playing field, only small gaps—
though perhaps a large number—remain open. However, this works only
if one player possesses a large advantage, namely, one that exceeds the
temperature, in comparison to the imprecision of the approximation due
to the temperature.

How one can actually find a good move using the temperature analysis is
another matter entirely, one that can be solved according to the procedure
presented in “The Thermostrat.” However, it often suffices to compare the
effects of the various move options. Thus white, starting from configuration
G + H, can move only to configurations of the form G’ + H or G + H'.
With regard to the configuration G+ H that obtains before the move, this
corresponds to the addition of a configuration of the form

G -G or H —H.

Such a configuration of the form G’ — G is called a (left) incentive of config-
uration G. The incentives of a configuration together provide information
on how well white can improve her position with one move (see Note 4 at
the end of the chapter). If these configurations depending on only a single
component are comparable among one another, then the hest move can be
recognized. As an example, we return to the configuration of the problem
stated at the beginning of this chapter: for the components of this position,
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—1/2+ %+ (£1), there are three incentives for white for the representations
~1/2={-1|},*={0|0}, and (1) = {1 | —1}, namely,

1
~3. % L+(£D).

On account of 1 + (£1) > —1/2 and 1 + (£1) > #, white can ensure
her prospects of winning by moving according to the third incentive to
—~1/2+ %+ 1. It is of interest that this statement can be made without the
winning prospects being made explicit.

T

The Temperature

The temperature is a measure of how advantageous it is for a
player to move first from a given position. An approach by
which this advantage can be formally and precisely measured
was proposed by Hanner in 1959.% The incentive is reduced to
the right of first move by setting a “tax” on each move in the
form of transfer payments between the players. The taxation is
handled on the hasis of the stop values, which are interpreted
as the score of the two games starting at the configuration in
question. With increasing taxation, the stop values change and
approach each other. The taxation works as follows:

e for each move, the player whose move it is pays a tax to
his opponent.

e for the first move, the taxation is set explicitly. For later
moves, the amount of tax demanded is the amount that
was actually paid by the opponent on the previous move.

e if the amount of tax seems too high to the player whose
move it is, he can seek tax relief; he offers to pay his oppo-
nent a smaller amount, in exchange for which the opponent
takes over the right to move by paying a higher tax.

e the player who did not make the last move will have to
make the next move together with a tax payment.

SOlof Hanner, Mean play of sums of positional games, Pacific Journal of Mathematics
9, 1959, pp. 81-89.




210 24. A Game with Dominoes: Have We Run Out of Space Yet!

With the method that we have just described, a player is never
worse off by having to move; thus it being one’s turn is never a
disadvantage. On the other hand, a player can reduce his tax
at will. For a position G = {G',...| G",...} and a starting
tax set at the level ¢ > 0, one thereby obtains the “cooled,”
that is, taxed, stop values of

Li(G) = max(R,(G') — t,...) and
Ri(G) = min(R(G") + t,...).

However, one must exclude the cases in which there is already
an equilibrium of the cooled stop values for a smaller value u
with 0 < w < t, that is, L,(G) = R,(G). Since the tax is
too high, it is no longer worthwhile to make the first move,
and therefore, we have Li(G) = Ri(G) = L,(G) = R,(G).
The temperature ¢(G) is by definition the beginning required
tax from which the stop values cooled via taxes agree and no
longer change, but remain at a fixed value, namely, the mean
value m(G).

One obtains the best and fastest overview of the entirety of all
cooled stop values L;(G) and R;(G) by means of a graphical rep-
resentation in a coordinate system. The following figure shows
for the example of the configuration G = { {3 |2} |1} how its
so-called thermograph arises from the already represented ther-
mographs of the two possible moves, namely, to {3 |2} and 1.

3
R ({312}) Left pays t,
LO(G) =2 L{({{3|2} 11}) ' but at most 34
m(G) = 1% -

(mean value) R, ({312} 1 1}) Left receivest,

but at most 3

R.(G) =1
o(@ L,(1)=R,(1)

% 1 1% 2
#G) = % (Temp.)
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As can be readily seen in the figure for this example, the cooled
stop values L;(G) and R;(G) are continuous as functions of the
parameter £ and are either piecewise constant or linear with
slope —1 in the case of L;(G), or 1 in the case of R;(G). As a
result of these possible slopes, which are inherited recursively
move for move, we end up with the inequalities

m(G) — t(G) < Ro(G) < m(G) < Lo(G) < m(G) + £(G),

and thus m(G) — t(G) — ¢ < G < m(G) + t(G) + ¢ for every
positive number ¢, as can be seen in the following figure:

(@) + 4G)
Ly(6)
L@
ma)
R, (G
Ry(G)
G
m(G) - 4G) 1a) f

Instead of taxing the stop values, it is also possible to cool the
game itself. This leads to the definition of a game

Gi={G,—t,...| G +t,...},

cooled by the value t > 0, where again one must exclude the
cases of excessive tax that arise when in the process a number
results for a lesser cooling u. The stop values of the cooled con-
figurations Lo(G;) and Ro(Gy) then agree, with the cooled stop
values L;(G) and R,(G). For example, for the cooled configura-
tion {3 |2}, witht < 1/2, we are dealing with the configuration
{3 —t]2+t}, while stronger cooling results in {3 |2},; for
the boundary case t = 1/2, we have {32}, = {5/2]5/2} =
5/2 4 =. Of particular interest is the fact that with cooling we
are dealing with a homomorphism of configurations; namely, for
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two configurations G and H we always have (G+H); = G+ H;,
and in the case of ¢ > H, this relation carries over to the cooled
configurations; that is, we have G; > H;. Of further interest is
the behavior in the case of multiple cooling, which is also at-
tainable in a single step: Gty = (Gt)y, whereby on account of
Li(Gy) = Lo((Gu)t) = Lo(Guxt) = Lut+(G), the thermograph
of cooled configurations results from a translation to the right
of the vertical coordinate. The significant features of configura-
tions and relations between configurations remain fixed under
cooling, despite the fact that cooling generally results in simpli-
fied configurations. In particular, some less-hot configurations
“freeze” into numbers, while numbers themselves remain un-
changed under cooling. Altogether, in cooling, little significant
data of a configuration are lost, while the most important prop-
erties are made more easily recognizable.

The Thermostrat

In a disjunctive sum of configurations G = G + - -+ + G, the
mean value m(G) = m(Gy)+---+m(G,) represents a good and
relatively easily calculated approximation to the stop values.
Based on the bound

for the temperature ¢(G), the data for the individual configu-
rations yield the following:

m(G)— max (1(G;)) < Ro(G) < Lo(G) < m(G)+ max (t(G:))-

i=1 =1,

Left, playing second, can win every game that starts in a con-
figuration of the form

G —m(G) +e.

How, then, should left play to win? An answer was given by
Hanner, and again by Conway, who constructed strategies for
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such situations by which left can force a win. Here left chooses
each of her moves based on the thermographs corresponding to
the currently reached components within the sum. More pre-
cisely, first, in a manner to be described, a suitable component
offering victory is selected in which the move is to be made. In
this component, the best move is determined based solely on
local considerations. That is, it is chosen as though the other
components were not present.

We still must deseribe how left can find the components G; for
each of her moves within the disjunctive sum G, + --- 4+ G,
in which under the given assumptions there is a winning move:
starting with the individual stop values Li(G1), ..., L:(G,),
R{(Gy),..., R(G,) recorded in the thermograph, as well as
the derived values

Wi(Gy, ..., Gr) = max(L(G1)—Ri(G1)), . .-, Le(Gr) = Re(Gr)),
first the least value t' > 0 is determined for which the sum
Lt = R,t(G]) R o T-{;(Gn) + I’Vt(Gl, ‘e .Gn)

attains its maximum on the interval ¢ > (0. Now left chooses
for her turn the component G; whose thermograph exhibits the
greatest width at the ¢’ that was found:

“"’tf(Gl, ‘s ,Gﬂ) = Lf-’(G:) - R,gf (Gi).

In this component, left moves as though the other components
were not present. Left continues to follow this “recipe” until the
sum of the configurations is equal to a number; then left obtains,
as the player to move from configuration G = Gy + --- + G,
a number that is at least as large as the mean value m(G) (see
Note 5 at the end of the chapter).

Since with the thermostrat the components in which to move
are selected whose thermographs show the greatest width at the
previously determined ¢’ level, this frequently, but by no means
always, involves the hottest components.

i
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Chapter Notes

1. Since we have to find good moves for the component G, we may first assume
for the numerical position = that it is written in the standard representation
discussed in Chapter 23, for example, as 0 = {|}, 1 ={0 |}, -1 ={| 1},
and 1/2 = {0 | 1}. For such representations, one now shows inductively—
in order of “simplicity”—that for an arbitrary nonnumerical configuration
G={H,...| P,...}, the number avoidance theorem holds:

If white to move from configuration G+ has a winning strategy,
then she can find a winning move within the G component.

For numerical configurations = that in the standard representation offer
white no opportunity to move, the assertion is clear, since in that case,
when faced with configuration G + z, white has moves only in the G com-
ponent.

On the other hand, if white can move in configuration z, then there is only
one possible move, and that leads to a simpler numerical configuration
z' with o' < =, for which the assertion has already heen proved by the
induction hypothesis. For the corresponding move that white can execute
from configuration G +z to G + @', there are two possibilities: if it is not a
winning move, then there must, as asserted, be one in the other component,
G. In the other case, a winning configuration arises for white, who is now
to play second; that is, we have G + 2’ > 0, and therefore, since G is not a
number, actually G + 2" > 0. Thus white moving into the position G + z’
certainly can win. Therefore, from the induction hypothesis, there must
be a move from configuration (¢ to a configuration H such that H +z’ > 0.
Since x > ', it follows that H + = > H 4+ 2’ > 0; that is, the move from
G to H is also a winning move from the original configuration G + z.

2. The upper bound Dp(G) can be defined for every configuration G that is
not a number by

dz(G) = max ({ Lo(G' — @) | G" is reachable from G by }) .

left in a single move

On account of
G:GF—I—{G—G'},

the handicap improvement that left can obtain with a move to configuration
' is bounded:

Ro(G) > Ro(G') + Ro(G — G') = Ro(G') — Lo(G' — G) > Ro(G') — du(G).
If left moves optimally, then we have

Ro(@) > Lo(G) — do(G).
For application to disjunctive sums, we note the obvious inequality

dL(G + H) < max (dL(G),d(H)).
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An extension of the last two inequalities to arbitrary configurations is
achieved when for numerical configurations G, we have d.(G) = 0.

. First, we clearly have the chain of inequalities

If we combine this with the already noted inequality

- Lo(nG) _ Ro(nG) _ dL(G)__

T T T

0

we obtain that the two partial sequences for the indices n =1, 2, 4, 8, 16,
. converge, and indeed, to the same limit. For natural numbers g, s, and
r=0,1,...,2° — 1, we also have
Lo ((g2° +7)G) < gL (2°G) 4+ rLy(G),
and thus _ _
Lo ((g2° +7)G) < Lo (2°G) n Lo(G)
q2° +r - 2 g
If the number n = ¢2° + r can be chosen arbitrarily large, then for the
values of ¢ and s, every predetermined size can be achieved. In passing to

the limit n — oo, we achieve the desired result, together with the analogous
inequality for the right stop values.

The analogous construction for player black, a.k.a.right, is G — G", where
G" is an arbitrary configuration reachable by black from configuration G
in a single move. The sign difference here indicates that it is in black’s
interest to choose a move with the greatest possible incentive.

Incentives, which we have gotten to know implicitly in our investigation
of stop values, depend on the concrete form of a configuration. That is,
equivalent configurations can have quite different sets of incentives.

To prove this, as taken from volume 1 of Gewinnen, pp. 160f., 179-181,
for every value t > 0, a strategy is constructed with which left, according
to whether or not she moves in the disjunctive sum G, + - - - + Gy, brings
the game to a number that is at least as great as

LL = RL{GI} + +RL(G“} + I’IV!L{GI| e |Gﬂ}!

respectively

RL — RL{GL} 4+ o4 Re(Gn} — 1.

The desired conclusion is obtained for the particular value
t = max(#(Gi)) for which L; = m(G) and Ry = m(G) — max({{Gi)).
One can make an even stronger statement if one chooses the t value in
such a way that the expression for L; attains its maximum.

The proof of both statements is obtained by complete induction. One
begins with the case that the sum G, + - + G, is equal to a number =,
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that is, that the play to numbers is over: one may assume, then, that the
underlying maximum of the value Wy(G1,...,G.) is attained at the first
component G1. Since

Ri(Ga+ -+ Gn) =Rz — Gy) =z — L,(Gy),
it follows that for the value x, we have

z=Li(G1)+ Re(G2+ -+ Gn) = Li(Gr) + Re(G2) + -+ + Re(Gn)
= Rt(Gl} + - ”+RL(GN} + MIL(GI,...,G”} = Ll‘. 2 RL-

If it is right’s move at a configuration Gy + -+ + G, differing by a number
and he moves to GY + G2 + -+ - + Gy, then by the induction hypothesis,
left can then play in such a way that the game ends in a number that is at
least as great as

R(GY) + Ri(Ga) + - -+ + Ri(Gn) + Wi(G", G, .. .. Gn).

Since
Ri(GY) + Wi(GY o, ....G) > Lu(GY)

and

Ry(G1) = min(L(GY),...) +min(t, t(G1)) < L.(GY) + t,
the quoted mean value is greater than or equal to Ry(G1 )+ -+ R (Gn) —t.

If it is left’s turn at a configuration G + -+ + G, that differs by a number,
then in the case t < max(t(G1),...,t(Gn)) she searches for her move in
the component G; for which the difference L¢(Gi) — R(Gi) is maximal; in
the special case ¢ = max(#(G1),...,t(Gn)), she chooses a component with
maximal temperature. In general, one then has ¢ < #(G;). If we again
assume, without loss of generality, that ¢ = 1 and left then chooses in
the selected component G1 the optimal move to a configuration G, then
in the further course of the game, left can always move, according to the
induction hypothesis, so that the game ends with a number that is at least
as large as

R(G)) + Ry(G2) + -+ R (Gy) — t.

Since
Li(G1) = max(R:(GY),...) — min(¢, {G1)) = R (GY) — ¢,

there follows, as desired, the attainability of a number of at least as big as

LL(GL} +RL{G2} +- RL(Gn} -
RL{G[} =+ HL(GQ} +-+ H[,(Gﬂ} + I',Vr.(Gl), ey Gn}-

There remains the case in which it is left’s turn in a configuration G1+---+
G, that differs by a number and also with ¢ > u = max(¢(G1),...,t(G.)).
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In these circumstances, left can move, based on the case just considered,
so that a number is attained that is at least as large as

Ru(GL] + -+ Ru{(;n} + u”u(GL: R :Gre}-

Since R:(G;) = Ru.(Gi) = m(G;) and Wi(G1,...,Gn) = Wu(Gy,...,
Gn) = 0, the assertion follows in this case as well.




Go: A Classical Game
with a Modern Theory

What is white’s or black’s best move from the go position shown in Fig-
ure 25.1% How many points can each achicve?

Figure 25.1.

Go is one of the oldest games. It is known to have been played as long ago
as 300 B.c.E. in China, and its origins may well be one or two thousand
vears earlier. Fifteen hundred years ago, go fever spread to other lands in
Asia, including Korea, and, above all, Japan.! Go arrived relatively late

Unformation on the history of go and how to play can be found in the follow-
ing sources: Siegmar Steffens, Go spielend lernen, Berlin 1990; Michael Koulen, Go:
Die Mitte des Himmels, Cologne 1986; Jorg Digulla, Alfred Ebert, Horst Timm, Go:
Anfangerbuch, Kassel 1994; Gilbert Obermair, Klassische Spicle aus dem Fernen Os-
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in Europe, at the end of the 19*" century. One of the great advocates of
go was Emanuel Lasker, whose book Brettspicle der Vélker cited earlier
devoted 80 pages to the game. Lasker had the following to say about go:?

Go has a much more penetrating logical structure than chess.
It surpasses chess in simplicity and is its equal in its demands
on the players’ imagination.

The Rules of Go

In comparison to chess, which models a battle between opposing
armies, the course of a game of go is much more abstract. The
standard game is played on a square 19 x 19 board, on which
the players alternately place a stone, black for one player, white
for the other. The stones, which except for their color are all
identical, are placed on unoccupied intersections of horizontal
and vertical grid lines. The goal of the game is to surround
as large an area as possible with one’s own stones, where the
opponent’s stones that are thus enclosed are captured and re-
moved from the board. Except for such removal, once a stone
has been played, it is not moved again for the duration of the
game.

Neighboring stones, joined horizontally or vertically, directly or
indirectly, form a chain. Thus in the left-hand diagram helow,
the white stones form two chains, and the black stones one. An
unoccupied intersection point that is a horizontal or vertical
neighbor of a stone in a chain is called a liberty of the chain.
In the left figure, the liberties of the black chain are indicated
with a cross. An intersection point can be a liberty of several
chains.

If the placement of a stone results in the last liberty of one
or more chains of the opposing color being occupied, then all
the stones of the affected chain are captured. According to the
rule against suicide, a stone cannot be placed so as to remove

ten, Munich 1986, pp. 35-56; Frederic V. Grunfeld, Games of the World, New York
1975; Erwin Glonnegger, Das Spiele-Buch, Munich 1988, pp. 132-139; Erhard Gorys,
Das grosse Buch der Spiele, Hanau ca. 1987, pp. 218-225; Richard Bozulich, The Go
Player’s Almanac, Tokyo 1992.

2Pages 89-169. The quotation comes from page 89.
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the last liberty of its own chain unless at least one opposing
stone is thereby captured. Thus in the right-hand figure, white
cannot play in the corner b. Occasionally, the possible moves
are limited in another manner by the rule of ko, according to
which a move cannot reproduce the exact situation from which
the opponent had just moved. Thus the repetition of moves hy
capturing and recapturing of a single stone are prevented.

There is no zugzwang (the requirement to move) in the game
of go. If neither of the players wishes to move, the game ends
and is scored: first, the stones whose capture cannot be pre-
vented are considered captured and removed from the board.
These stones, together with those already removed, are counted
as one point each for the opponent. Most of the points scored
come from captured territory, where each unoccupied intersec-
tion point that is surrounded by a player’s stones counts as one
point. An intersection point is considered surrounded if every
path from the point following horizontal and vertical lines is
broken by the player’s own stones. The effect of this rule will
become clear in the simple examples presented in the main text.

R s

Since the number of points won decides the victor in go, and not who

makes the last move, it is clear that we are not dealing with a game in the
sense of Conway. On the other hand, it can happen that parts of the board
can hecome completely stable many moves before the end of the game, so
that a number of isolated battlefields emerge, each completely independent
of the others. Since each move is made in one battlefield or another, we are
dealing with a disjunctive sum of these subconfigurations. The analysis of
sums of positional games with point scoring was first undertaken in 1953, in
the work of Milnor previously cited.®> Milnor, and later Hanner, analyzed

3John Milnor, Sums of positional games, in: H. W. Kuhn, A. W. Tucker (eds.),
Contributions to the Theory of Games II, Annals of Mathematics Studies, 28, 1953,
pp- 291-301.
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winning positions that each player can secure in a sum of positional games
(see “Go as a Point-Scoring Game”). Although the article makes no direct
reference to go, it is clear that application to that game was a prime motive
for both researchers.*

We have seen that with the help of stop values, one can “translate”
games in which the last player to move wins into winning levels of a zero-
sum game. But the reverse process is also possible, as will be shown in
“Blockbusting.” However, one must assume that it is advisable to move.
That is, the minimax value for the player whose turn it is can never be
less than the minimax value that would obtain for the same player moving
second.

Blockbusting

The game blockbusting is played on a board whose squares are
arranged in a single row. Players black and white alternate
placing stones on an unoccupied square. The game ends when
the board is full. White wins one point from black for each
boundary line between two squares both of which are occupied
by white stones. Black wins nothing. He can only attempt to

4Thus on page 298, Milnor uses the go term “sente” to describe the situation in
which a move must be countered in the same component. In the introduction to the
collection in which Milnor's article appeared, the editors Kuhn and Tucker note that
go endgames in particular frequently have the character of a sum of isolated games as
investigated by Milnor (p. 191). Milnor, who later became well known for his work in
topology, for which he was awarded the Fields Medal in 1962, was at the time a student
at Princeton. As he wrote elsewhere, go was a game that he played frequently (A Nobel
Price for John Nash, The Mathematical Intelligencer 17/3, 1995, pp. 11-17). For a
mathematical interpretation of the sente see Elwyn Berlekamp, John Conway, Richard
K. Guy, Winntng Ways, second edition, Natick, MA 2001, volume 1.

In Hanner's article there is also no direct reference to go. However, Olof Hanner
cheerfully discussed the origin of his work: Hanner first encountered the game of go on
a visit to the United States in 1949/50. But he became more deeply interested in the
game on encountering Takagawa's book How to Play Go. The idea formed in Hanner's
mind that end configurations in go could be assigned a single number. Hanner assembled
multiple copies of a configuration; he was not yet acquainted with Milnor’s work. When
such multiple configurations are played out, it is often advisable to play in one or another
different configuration. But how are such sente—gote questions to be resolved? Hanner
assigned values to the various moves and determined which values led to a contradiction.
He eventually arrived at a formal definition in which the right to mowve is “auctioned.”

An explicit application of Milnor’s results to go can be found in John Miller, The End

same of Go, in: Proceedings of Northwest 76, ACM/CIPS Pacific Regional Symposium,
Seattle, 1976, pp. 228-233.
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minimize his loss. The following illustration shows a midgame
configuration in which white has won two points.

For a complete analysis of this game, the minimax values in the
sense of Zermelo’s theorem must be calculated for each con-
figuration. Here one must consider all possible configurations
that can arise in the course of the game, and indeed, in the two
variants in which black or white moves first. Clearly, all of the
minimax values are integers. Moreover, the right of first move
cannot be detrimental, since adding a stone can only improve
one’s situation. On the other hand, the right to move can never
be worth more than two points (see Note 1 at the end of the
chapter).

The crucial conditions for evaluating an intermediate configu-
ration are the following:
e the points already scored by white;

e the remaining boundaries between squares and the border-
ing stones (one can imagine a black stone on the far left
and far right of the board).

Thus a configuration can be thought of as a disjunctive sum of
its subconfigurations. In our example, we have

20O | @+ =2+W3B+B15,

where the notation should be self-explanatory. Apart from the
empty spaces WOW =1 and W0B = BOW = B0B = 0, every

subconfiguration BnB, BnW, WnalW, for n = 1,2,3,..., is
uniquely determined by the available moves on either side. For
example,

B1B ={BOW +WO0B | BOB+ B0B} ={0|0} ==
and

s AR 4 ' '
W3B — {” 2W, W1W + W1B, | W2B,W1B + B1B, }

14+ W2B B2B
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In comparison to go, blockbusting is a trivial pursuit. The vari-
ety of situations that arise in go is much, much greater, and in
blockbusting, the endgame is uniquely determined. Blockbust-
ing can serve as a good example of a translation from a game
in which points are fought over to a game in the sense of Con-
way, in which the last player to move wins. The translation is
made configuration by configuration, whereby each point won
by white in the original game offers the possibility of an addi-
tional move. This has the effect that the resulting stop values
agree with the two game values of the original configuration.
The reason that this construction works is found in the number
avoidance theorem. It ensures that the additional move op-
tions that arise in the numerical components are immediately
unattractive and are therefore not used until the end of the ac-
tual game. For intermediate spaces of size at most four squares,
the following table contains the configurations translated into
the Conway system. The configurations have been simplified as
much as possible, which is not always a simple task:

n WnW WnB BnB

0 1 0 0

1 {2]0} 110} *

2 1 {{2]1}]+) 0

3 {2011} {{{3[2}/14x}[0} {1]0}
({312} 14} 1 {14 %}

The winning possibilities of a blockbusting configuration can
be quickly analyzed if the mean values and temperatures of all
intermediate spaces are known. It turns out that the tempera-
ture of a configuration with one intermediate space is at most 1,
a property that carries over at once to all configurations. The
mean values of the configurations tabulated above are collected
in the following tahle:

n | m(WnW) m(WnB) m(BnB)
0 1 0 0

1 1 1/2 0

2 1 3/4 0

3 3/2 7/8 1/2

4 7/4 1 1/2

223
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In our example, we obtain the mean value

7 23
m(2+ W3B + B1B) = 2+ st0=7%

from which we obtain, since the temperature is at most 1, the
two stop values Ly(2 + W3B + B1B) = 3 and Ry(2 + W3B +
B1B) = 2. The minimax value of the original game, starting
with the configuration 2 + W3B + B1B, is therefore 3 if white
begins, and 2 if black goes first. Although in this case the result
can be derived much more quickly by an analysis of the possible
moves, it is already clear how simple the procedure used here
can be in complex cases.

One can use a technique of Berlekamp in which all configura-
tions are cooled by 1 to simplify greatly the recursive analysis
of configurations with one intermediate space.” Of course, some
information is lost in cooling, for example, when the configura-
tions W1B = {1| 0} and B4B = {1+ * | % } are both cooled
by 1/2. However, the most important characteristics of the con-
figurations are preserved as before. Aside from (W1W); = 14+,
cooling by 1 already suffices to freeze all configurations of one
intermediate space to their mean values.

P i

In general, in the translation every end configuration of the given zero-
sum game is replaced by a configuration in a game in the sense of Conway,
and in fact, by a numerical configuration corresponding to the amount won
by white. For example, if white wins two points, then this configuration
is replaced by the sequence of moves 2 = {{{|} |} |}; that is, white can
move twice, while black can move neither immediately before nor after each
of white's moves (see Note 2 at the end of the chapter). If this happens for
all end configurations that can occur starting with a configuration of the
given zero-sum game, and if all other possible moves remain unchanged,
then this construction of Conway games has the following properties:

5Elwyn R. Berlekamp, Blockbusting and Domineering, Journal of Combinatorial
Theory A 49, 1988, pp. 67-116. Of special significance in Berlekamp’s procedure is that
the cooling process by 1 can be essentially reversed for the blockbusting configurations.
Thus it is possible to parameterize the configurations with one intermediate space in a
simple manner using the mean value. One can proceed similarly in an analysis of go.
It can be argued plausibly on the level of the original (point-counting) version that in
cooling by 1, no significant information about winning possibilities in disjunctive sums
is lost.
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e the two minimax values of the zero-sum game depending on who
moves first always agree with the two stop values of the configuration
that arises.

e the construction is compatible with the creation of disjunctive sums.
That is, disjunctive sums of zero-sum games can be translated indi-
vidually or en masse into Conway games. In each case, the result is
the same.

As we saw in our investigation of blockbusting, the configuration trans-
formation of zero sums to Conway games works on account of the number
avoidance theorem. It guarantees that the moves that arise within the
Conway game are unattractive and therefore are used only immediately
before the end of the game. Therefore, points won in the zero-sum game
are translated into possible moves for the winning player.

In the special case of go, there are some particularities to be taken
into account. There are several variants of the rules, differing in details,
that occur in cyclic repetitions of moves. Thus two-move repetitions are
prevented by the rule of ko, although at the price that the disposition of the
playing stones does not contain all the information about the configuration.
Repetitions of four or six moves are possible in principle, however, and they,
too, require an extension of Conway’s theory in which loops are allowed. In
our brief overview, we will therefore generally exclude ko situations. Also
problematic is the peculiar way in which the game ends: play continues
until neither player wishes to move.

With regard to this last point, consider the following diagram, which
shows a simple situation called dame. As in all the subconfigurations that
follow, the stones on the boundary are considered to be “alive,” that is,
not subject to capture:

Both black and white can make a move, or not make one, without changing
the result of the game. The translation of this configuration into a Con-
way game can take either the form 0 = {|} or the form + = {00} =
{{1}1{]}} Thus the convention according to which all configurations in
which good players would no longer choose to move is usable in individ-
ual cases, but is too vague for general application. For in more complex
situations, the pointlessness of further moves is not so apparent as in the
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pictured example, in particular when a player hopes that his opponent will
make an error. On the other hand, the theoretically absolute criterion
that the minimax values of both players’ right to move first agree is in a
practical sense unverifiable for complex configurations.

One possibility that yields the requisite uniqueness for mathematical
investigations for relatively simple configurations in which no ko and seki®
situations arise was found at the beginning of the 1990s by Berlekamp and
Wolfe.” To this end, the rules of go are modified to a Conway game called
mathematical go. That is, starting with the geometric construction of go
configurations, the rules of stone placement are altered in such a way that a
Conway game results. In the resulting stone-by-stone translation of a con-
figuration into the Conway game, one can always obtain a configuration
that is equivalent in the sense that the minimax values of the go configu-
ration agree with the stop values in mathematical go. Here are the rules of
mathematical go:

e each player must move. A player is not permitted to pass.

e as usual, chains of stones are captured when they lose their last liberty
by an opponent’s move.

e instead of placing a stone, a player may return an opponent’s captured
stone.

e moves are prohibited that reproduce a previous configuration.

e prohibited are suicide moves; a stone that is placed must either pos-
sess at least one liberty or capture at least one enemy stone.

e stones that surround one or more “eyes” of unoccupied squares re-
main free from capture for the remainder of the game.®

e the last player who is able to move is the winner.

67 seki in go is a configuration of stones in which neither player can place a stone
without loss. The squares are evaluated as undecided.

7Elwyn Berlekamp, Introductory overview of mathematical go endgames, in: Richard
K. Guy (ed.), Combinatorial Games, Proceedings of Symposia in Applied Mathematics
(AMS Short Course Lecture Notes) 43, 1991, pp. 73-100; Elwyn Berlekamp, David

folfe, Mathematical Go, Wellesley 1994; Elwyn Berlekamp, The economist’s view of

combinatorial games, in: Richard J. Nowakowski (ed.), Games of No Chance, Cambridge
1996, pp. 365-405. An overview is provided by the go master Robert High, Mathematical
Go, in: Richard Bozulich, The Go Player’s Almanac, Tokyo 1992, pp. 218-224; David
Gale, Go, The Mathematical Intelligencer 16/2, 1992, pp. 25-29; J. Nievergelt, Das
Go-Spiel, Mathematik und Computer, Informatik Spektrum 17, 1994, pp. 106-110.

8This rule prevents a player from losing a position with two eyes by playing in one
of the eyes. One would never play thus in normal go, but a player must do so in
mathematical go if he wishes to transform the surrounded fields into moves.
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Since in mathematical go, surrounded areas can have stones placed in
them, these rules will seem highly irregular to an experienced go player.
These rules can be clarified by means of a few simple examples, in which it
will quickly become clear how elegantly the scoring of points, whether by
surrounding area or capturing stones, can be transformed into additional

= Q@“Og‘ ={0]0} ==
- Q%Q ={0] }=1.

In the next figure, white captures a black stone and thereby obtains an
additional move for the following play:

= +00§§© ={2]0},
+@ = Q§Q+..Q§Q ={1] }=2.

“In contrast to chess, in which white moves first, in go, black begins. Thus black
would in fact have the left role and the positive range of numbers, and that is how
Berlekamp and Wolfe handled it. Here, however, as we did in the previous chapters, we
will stick with the convention that we used for chess, in which white corresponds to left.
Readers who delve into the works cited should be aware of this difference.

since
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A bit more multifaceted and therefore more interesting configuration is

the following:

={1,%|%{2]|0}}={1]x*},

which involves dominated moves in the two omitted configurations. Thus
on account of 1 > *, white can avoid the move to * without loss. For black,
the relation * < {2 ] 0} is decisive, since white, moving second, possesses
a winning strategy for the configuration {2 | 0} — #. From the resulting
form {1 | #} one finally recognizes without difficulty the mean value 1,2
and the temperature 1.

The simple technique of comparing two possible moves as we have just
done is well known to us from Conway games. Using the variant rules for
mathematical go, it can be used indirectly for normal go: a simple analysis
of moves, yielding the result that white, going second in the difference
configuration

{210} — %= +

can always force the last move for herself, suffices for us to be certain
that the subconfiguration * can never be worse for black than {2]0},
independent of the rest of the board, and indeed, in normal go as well.
One may now object that a mathematical theory is not required for such
obvious results, since no go player with a certain amount of experience
would ever conjecture otherwise. However, the objection is justified only
as long as the prospects for winning in the configuration being examined
are as easy to compare with one another as in this example. We shall return
to this topic later.

With increasing skill at recognizing such dominated moves, one can
turn to configurations with a greater variety of available moves. Thus in
the next configuration, for both white and black, only the move at the left
intersection point comes into question:
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The mean value of this configuration is 5/4, and the temperature is 3/4,
which can be seen from the thermograph:

o thermograph for 2
mean value = 1% thermograph for {2 | {1 | =}
1

thermograph for {1 | +}

v 1 1w !
temp.
=34

If the configuration appears five times in a row, then there is a net
mean value of 25/4 and a temperature of at most 3/4. Since the stop
values must be integers, one sees that 7 is the only possible value of the
left stop; correspondingly, the right stop equals 6. In normal go, white can
therefore achieve seven points with the first move, and six with the second.

In the next configuration as well, the move on the left intersection point
dominates the other possibility, and this holds regardless of whether white
or black moves first:

={3[{2]0}}

The mean value of the configuration is 2, and the temperature is equal
to 1. Analogously, for the configuration

={4[{3[{2]0}}}

the mean value is 3 and the temperature 1.

We will need to simplify things significantly if we are to get a handle on
the enormous multiplicity of subconfigurations in go endgames. Extrapo-
lating from the most successful results in blockbusting, Berlekamp cooled
the configurations of mathematical go that he was investigating by 1. The
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result is somewhat related to the function of a technical drawing, which
clarifies the structure of an object by providing a unique perspective that
highlights important features while disregarding what is of lesser impor-
tance. In cooling, what remains in particular are mean values and mutual
associations based on the greater than or equal relation or on a disjunctive
sum. Why the value 1 for cooling is appropriate for go will be discussed in
“Go as a Point-Scoring Game.”

T

Go as a Point-Scoring Game

Disjunctive sums, greater than or equal relations, and cooling
can be used for the direct evaluation of go positions, without
recourse to a transformation into mathematical go, and thus
without the reverse translation into a game with point scoring
implicitly required for the definition of the stop values. This
direct method corresponds to the approach taken by Milnor
and Hanner in the 1950s.

For each go configuration G—depending on whose move it is—
there are two minimax values Lo(G) and Ro(G), each of which
reflects the score that left obtains when both players play op-
timally. Since one may pass in go, left moving first can score
at least as much as left moving second. That is, the relation
Ly (G) > Ry(G) always holds.

For the disjunctive sum G + H of two subconfigurations G and
H, we have Milnor’s inequalities

Lo(G) + Lo(H) > Lo(G + H) >
Ro(G) + Lo(H) = Ry(G + H) = Ro(G) + Ry(H)

and

Lo(G) + Lo(H) = Lo(G + H) >
Lo(G) + Ro(H) > Ro(G + H) > Ro(G) + Ro(H).

Each individual inequality is derived from strategic considera-
tions like those used by Lasker in his investigations of nim vari-
ants (see Chapter 22). A player counters his opponent’s move
in the same component in which that player has just moved,
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and indeed, with the move that is optimal in the component in
question without regard to the other components.

In particular, Milnor's inequalities make it possible to estimate
the influence of individual subconfigurations on the winning
prospects of a global configuration. In this regard, we may con-
sider how the winning prospects of a confisuration G change
when it is enlarged by a subconfiguration H to a global config-
uration & + H: on account of

Lo(G) + Lo(H) = Lo(G + H) > Lo(G) + Ro(H),
Ry(G) + Lo(H) = Ro(G + H) = Ro(G) + Ro(H),

the changes experienced by the two minimax values are limited
by the minimax values of the additional configuration H.'° For
left, the configuration G + H, in comparison to configuration
G, is:

¢ at least as favorable in the case of Ro(H) > 0;
e equally favorable in the case of Lo(H) = Ro(H) = 0;
e at most as favorable in the case of Lo(H) < 0;

e less or equally favorable in the case of Ro(H) < 0 < Lo(H)
according to whose move it is and the starting configura-
tion G.

Configurations in point scoring games whose two minimax val-
ues are equal to zero are called null configurations. They do not
alter the winning prospects as subconfigurations of a disjunec-
tive sum. Examples of such null configurations are obtained
when one adds a configuration H and its inverse configuration
—H': the second player to move can then imitate the move of
his opponent in the other component.

100n this basis, J. Mark Ettinger (A metric for positional games, Theoretical Com-
puter Science 230, 2000, pp. 207-219) defines a “distance,” that is, a mathematical
metric, for two arbitrary such point scoring configurations & and H of “Milnor type”
(that is, with Lqo(J) = Rg(J) for all subsequent configurations .J). This is done by
forming the maximum

pG H) = max |Lo(G + X) — Lo(H + X)| = max |Ro(G + X) — Ro(H + X)|
for arbitrary configurations X of Milnor type. Two configurations then are separated

by a small distance precisely when an exchange of the two configurations within a sum
changes the minimax values by at most a correspondingly small amount.
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With the help of Milnor’s inequalities, two configurations G
and H can be compared by considering how as subconfigura-
tions they influence the winning prospects of disjunctive sums.
Using the inverse configuration —H, one forms the difference
configuration G + (—H), or G — H for short. Since

G=H+(G-H),

one has the following for the subconfiguration GG in comparison
to the subconfiguration H within an arbitrary global configu-
ration:

e (G is at least as favorable as H in the case Ry(G — H) = 0;

e (G is equally favorable to H in the case Lo(G — H) =

e (I is at most as favorable as H in the case Lo(G — H) < 0;

e depending on who moves first and the remaining configu-
ration, G can be less or equally favorable to H in the case
Ry(G — H) <0< Lo(G — H).

In a game, a player must compare the winning prospects of
configurations before each move. If he has the choice within
a configuration ¢ to move to point a or to point b, say, and
thereby achieve configuration G, or Gy, then he should choose
the move that would yield him as second player the greater
minimax value. Since the two configurations G, and G arise
from the same configuration, they differ at only a few locations,
so that the difference configuration G, — Gy, is relatively simple
in composite configurations. The two minimax values provide
information as to whether one of the two moves is better, inde-
pendent of the remainder of the configuration, and if so, which
move it is. For example, if we ask whether the move to point a
or point b is better for black in the configuration
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then we need to investigate the following configuration:

? Ga_ Gb AF .

The parts of the board outside the depicted subconfiguration
consist of two mutually inverse subconfigurations, and they
therefore together form a null configuration. Since these regions
therefore have no influence on the winning prospects of the to-
tal configuration, they have been omitted from the diagram.
If one now analyzes the possible subsequent moves obtainable
from the depicted difference configuration, one obtains

Lo(Gy —G—=b)=1 and Ry(G,—Gp) = —1.

Consequently, it cannot be decided without knowledge of the
rest of the board which move, a or b, is hetter for black. In fact,
depending on the remaining configuration, either move could be
the better one. Even if this result falls short of expectations, the
example clearly shows qualitatively which situations are possi-
ble. In particular, moves are not always locally comparable!

How lucrative the right of first move can be arises from the dif-
ference Ly(G) — Ro(G). The incentive to have the first move is
lessened if one places a tax on moves, as described in the previ-
ous chapter. The more the initial tax requirement is increased,
the more the taxed minimax values L;(G) and R;(G) approach
each other, where the change from the initial value Ly(G) or
Ry(G) is at most ¢. If the amount of cooling is sufficiently
large, then the two cooled minimax values agree. This value
fixes the mean value m(G) of the configuration and with it the
requisite cooling of the temperature #(G). As described in the
previous chapter, the winning prospects of a disjunctive sum
can be approximated to the extent that the mean values and
temperatures of the individual components are known. If one
also knows the thermographs of the components, that is, the
behavior of the minimax values under the influence of a contin-
uously increasing cooling, then using the thermostrat, one can
actually find approximately good moves.

233




234 25. Go: A Classical Game with a Modern Theory

A particular phenomenon occurs when the configurations are
cooled by the amount 1 — &, a value just short of 1: if with this
cooling one is able to determine the minimax values L;_.(G)
and R;_.(G), then one can find from these the original, always
integral, resulting minimax values Ly(G) and Ro(G), since an
interval of length 1 — £ can contain at most one integer. Al-
though with such cooling no information about the winning
prospects is lost, nonetheless, within a compound configuration,
drastic simplifications can result, so that in individual compo-
nents some move variants cool early on to a fixed value. We
shall see in what follows that on the level of mathematical go
with cooling 1, a similar effect is obtained.

.

In order to be able to tell from a go diagram whether the Conway
configuration itself or the configuration cooled by 1 is meant, a special
notation is used, in which the stones at the edge of the diagram that are
assumed to be alive are depicted only partially. For our first example, we
return to a configuration that we have already studied in its uncooled state:

@={3—1|{2|0}l+1}={2|2+*}=2+{0|*}

Here the configuration called “up,” denoted by 1= {0 |  }, is positive,
but is nonetheless “almost” equal to zero: both the mean value and the
temperature, and thereby both stop values, are equal to zero. For every
small positive number ¢, we therefore have 0 <7< «.

In other cases, a cooling by less than 1 leads to the “freezing” of a
configuration to its mean value. Thus for the configuration of the following
diagram a cooling in the amount ¢ that is just a bit larger than 1/2 suffices:

€D -0l -0-tln) =1t -3

The required taxation on the stop values, which are interpreted as a
score, in the amount 1, is thereby reduced to 1/2. However, in go configu-
rations such tax reductions can be dispensed with. That is, aside from the
case in which both stop values agree, one can always charge the full tax of
1. This is noteworthy in that under some circumstances the incentive to
move first is not only completely removed, but is even reversed: to move is
punished. However, the temperature does not fall much below the value 1,
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in any case not so far that the uncompromising tax of 1 changes the result
with respect to normal cooling (see Note 3 at the end of the chapter). Thus
for our example, we have

(1-1lm+1)={0[1} =5 ={1]+},.

As one can see, the tax raised by 1/2 is again compensated by a corre-
sponding bonus, which furthermore would no longer function in the case of
a tax demand of more than 1. Since with the simplified recursion formula
only whole points are to be calculated, “cold go,” the game of go cooled
by 1, can be easily played: as long as it is advisable to play in normal go,
for each move in cold go, one point in the form of a captured stone must
be paid to the opponent:

®={®+O\®+.}={om=g

In the next two configurations as well, for both white and black only
the moves to the intersection point furthest to the left come into question,
since that move dominates the other possible moves:

where for the configuration {0 |1}, the equality {0 [T} =1 + T + * can be
proved. Although the configuration 1 is not comparable to the configura-
tion *, it is comparable for the duplicated configuration T + 1: altogether,
we have T ||* and 0 < 1 <1 4 1 < £ for every small positive number &.
Much smaller yet than 1 is the next configuration in go cooled by 1:

@={5|{4|n}}l={5-1|{4|n}1+1}

={4[{3[1}+1}={4]{4]2}}
—4+{0]{0]-2}}

{210}}, +1} = {3

3+1r=3+{0[1}

On the one hand, the subconfiguration {0 | {0 | —2 } } is positive, since
white can win moving first or second. On the other hand, even the infini-
tesimally small configuration 1 is many times larger than {0 {0| -2} }:

fO[{0]=2}}+--+{0[{0]-2}}<T.




236 25. Go: A Classical Game with a Modern Theory

Moreover, we could have encountered the configurations 1 and {0 | {0 |
—2}} in the domino game, since we have

t= and {0[{0]-2}}=

Between 0 and {0 | {0 | —2} } there are additional configurations that
can also be discerned in cold go:

€TT@O® — (716101}, = {T-11{6]0},+1)

=6+{0[{0]-4}}.

In general, the configurations 4+, = {0| {0 | —r } }, definable for every
positive fraction r, satisfy the chain of inequalities

0<-<Hy<F3g<t+a<+1<+o=T,

where the changes in size are marked. For two numbers s > r, one has
namely
O<+s+-++< 4.

As one can easily imagine, this catalog of configurations is nowhere
near complete. Nonetheless, many endgame situations can be investigated
with the types of configurations that we have examined, since configura-
tions of stones can frequently be represented by equivalent Conway games.
Thus the book by Berlekamp and Wolfe cited previously contains pages of
overviews of stone configurations together with the Conway configurations
that arise from them in cold go. However, there are also configurations
that after their cooling still possess a positive temperature and for which
therefore the first move is very lucrative. Examples are

={1£1—§‘1} and ={3$‘1%}

Yet how are the statements that one obtains for a given go configuration
with the help of subconfigurations cooled by 1 to be interpreted? The
answer is surprisingly simple. One first forms the disjunctive sum of the
subeconfigurations cooled by 1, from which the winning prospects can be
read off at once:




Combinatorial Games 237

Figure 25.2.

e the left stop, that is, the minimax value for white moving first, is
equal to the smallest integer that is greater than or equal to the
disjunctive sum.

e the right stop, that is, the minimax value for white moving second, is
equal to the largest integer that is less than or equal to the disjunctive
sum.

As an example, let us consider the position that appeared at the begin-
ning of the chapter. In addition to the certain points, namely, 3 for white
and 5 + 7 = 12 for black, we have the splitting into the disjunctive sum
shown in Figure 25.2. Also shown are the Conway configurations cooled by
1, as we have already seen in the previous examples.

If the configuration shown is cooled by 1, then one obtains the config-
uration

_3+T!

whose ordering hy size in comparison to the integers is given by
-3 < -34+1< -2

Thus the minimax value for white is —2 points if white begins, and —3
points if black moves first. Moves with which these minimax values are
realizable are recognizable analogously:

¢ if it is white’s turn, she moves to the field marked X in Figure 25.2
and thereby attains the configuration 3 in this component. In cold
go, the position —2 is therefore achieved, which is also the minimax
value of the now second player white.
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Figure 25.3.

e if black begins, he also plays on the marked point, attaining in cold
go 1 + % in the relevant component and —4 + # altogether, which
guarantees him a win of at least three points; namely, as first to
move, white has a minimax value of —3, the smallest integer that is
greater than or equal to —4 + *.

Moreover, the move in one of the components cooling to 1 + # is bad
for black: a move there would bring the configuration 2 to this component
in the cooled version, and thus —2+ %+ 7 altogether. The greatest integer
that is less than or equal to this configuration is —3, and thus the minimax
value for the second player white. With a move in the component marked
with (b), white thus gives away a point.

However, if, as one can see in Figure 25.3, one of the two * components
is no longer available, then the situation changes fundamentally. Although
the configuration agrees with that under investigation up to the intersection
points marked with f}, a completely different situation results, and indeed,
in its long-term effect on the remaining components (a) and (b): with
one move in the formerly optimal component (a), white can attain in cold
go, starting from —3 + * + 7, the configuration —2 + % + 7, and with a
move in (b), the configuration —2 + 1. Since now black can move, these
configurations correspond to minimax values of —3 and —2. In the latter
case, white’s loss is reduced by one point.

The incommensurability of Conway configurations such as #[|0 and || T
is therefore no mathematical fantasy, but a strategic reality: whether the
move to (a) or (b) is better for white depends on the structure of the
remaining go configuration. Isolated statements are impossible to make in
such a situation.
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Whether local assertions are possible and what they might be can be de-
termined with the difference procedure mentioned above: a player forms the
difference between two cooled configurations that can be reached through
some moves. Equivalent to this is the pairwise comparison of incentives,
as described at the close of the previous chapter. In the following table
are collected the incentives of several configurations in cold go, in relation
to the specified possible moves. The greater the incentives, the better the
move. The moves within a numerical configuration are unattractive, as is
already known from the number avoidance theorem.

Configuration Incentives for ...
G={G,...|G" ...} | White: G’ =G Black: G - G"
1={0]|2} ~1 -1
1/2={0]|1} -1/2 -1/2
1/4={0]|1/2} —1/4 -1/4
*={0]|0} * *
1=1{0]+) —1 fx

T+t +x={0["} —t=1T+=* T

Let us summarize: endgame situations in go that remain ko and seki
free can be transformed into an equivalent Conway game of mathematical
go. If these configurations are cooled by 1, then in the components there
frequently arise numbers or other familiar standard configurations known
from other games, such as *, 1, and 4+, which are easier to deal with
than the uncooled configurations of mathematical go. Since furthermore,
the properties of interest, namely, the original stop and minimax values,
continue to be determinable, one can shift one's investigations completely
over to the level of cold go. Table 25.1 shows how the various variants of go
are related. The mathematical background, which is by no means obvious,
is discussed further in “Why Cold Go Is So Informative.”

To conclude, we should say that configurations in which ko situations
can arise in further play can be analyzed on the basis of mathematical go.
To this end, Martin Miiller and Ralph Gasser!! defined two rule variants in
which a player is restricted in his choice of moves in all situations involving
ko in such a way that the repetition of moves is excluded. In relation
to winning prospects, these two variants form a limitation for the given
configuration; that is, in comparison to the normal rules, one variant is at

M fartin Miiller, Ralph Gasser, Experiments in computer Go endgames, in: Richard J.
Nowakowski (ed.), Games of No Chance, Cambridge 1996, pp. 273-284; Martin Miiller,
Computer Go as a sum of local games: An application of combinatorial game theory,
dissertation ETH Nr. 11006, Zurich 1995.
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Win Prospects of a Configuration

Game in (Classical) Go

Classical go; Minimax value for white Minimax value for white
game with point | moving first moving second

scoring

Mathematical Left stop Right stop

go; last player
to move wins
Cold go (cooled | Smallest integer greater Largest integer less than
by 1); last player | than or equal to the con- or equal to the configura-
to move wins fisuration tion

Table 25.1. Three go variants and their interrelations

least as favorable for black, the other at most as favorable. For example,
for the configuration

ey

O

the result is in one case a mean value of 77/32 and temperature 53/32, and
in the other, a mean value of 76/32 and temperature 52/32.

With its application to a classical and significant game like go, Con-
way's theory has doubtless attained an important summit, and that with a
game that is not even a Conway game.'? Aside from the mathematical the-
ory, there is still much that remains open—from the opening, through the
midgame, until deep in the endgame—in which a decomposition into inde-
pendent subconfigurations leads only seldomly to such manageable small-
scale configurations as in the examples studied here. In all seriousness, one

121n fact, go is a positional game with point scoring. As already sketched in “Go as
a Point-Scoring Game,” the investigations of Milnor and Hanner were based directly on
minimax values. There the cooling by 1 of a configuration in mathematical go finds its
correspondence when the minimax values are cooled by an amount 1 — ¢ close to 1. A
disadvantage of this procedure is that no knowledge of “infinitesimal” Conway games
such as %, T, {0 |1}, and 4, can be used. However, in exchange, cooling on the level
of point scoring games is more suggestive. Thus it is relatively plausible why optimal
stratgies in point scoring go cooled by just under 1 are also optimal in normal go. It is
also immediately clear how much a player can lose at most if he uses a strategy that has
proven optimal in a cooling of 2 — &.
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could not have expected more. However, it is significant that the value of
a configuration depending on the right of first move can be expressed ex-
actly through properties of independent subconfigurations. In particular,
go concepts such as sente and gote have found a formal exact analogue.
To that extent, we may hope that the approaches of mathematical go have
also been able to make a small contribution to the creation of computer
programs for go that in the not too distant future might be as strong as
those of today for chess.!?

Why Cold Go Is So Informative

In order to recognize how the stop values of mathematical go
are reflected in cold go, one may translate strategies for a player
of mathematical go into the cooled version (see Note 4 at the
end of the chapter). To this end, in cold go as well, the player
in question also places a stone where he would have placed it in
uncooled go, and does this until a configuration is reached for
which in uncooled go both stop values are the same.

In this way, we obtain the following assertions for configurations
G of mathematical go, as we shall soon see:

e from L,G) follows G1| > 0; that is, in cold go, white
moving first wins.

e from Lg(G) = 0 follows G; < 0; that is, black moving
second can win in cold go.

If one also considers possible translations by integers, the two
assertions can be collected into the chain of inequalities Ly (G) —
1 < ||G1 < Lo(G), so that Ly(G) is the smallest number greater
than or equal to (7;.

Let us look at the first assertion. If white makes the first move
in a configuration G of mathematical go, then, depending on

13Information on go programming can be found in Anders Kierulf, Smart game board:
a workbench for game-playing programs, with Go and Othello as case studies, disser-
tation, ETH Nr. 9135, Zurich 1990; Christian M. Hamann, Chronologie der Program-
mierung des japanischen Brettspiels Go: eine Herausforderung an die Kiinstliche Intel-
ligenz, Angewandte I'nformatik 12, 1985, pp. 501-511; David Erbach, Computer and
Go, in: Richard Bozulich, The Go Player's Almanac, Tokyo 1992, pp. 205-207; Martin
Miiller, Review: Computer Go 1984-2000, in: Computers and Games, Lecture Notes in
Computer Sciences 2063, Berlin 2001, pp. 405-413.
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the play of white and black in mathematical go, one obtains a
game of type

(oA Ny ARG /NN S

where we assume that the configuration Z is the first in the
game to arise with the property Lo(Z) = Rg(Z). If both players
translate their strategies into cold go, then the result is the game

Y1250, Y15 B g
or
ICTRRLEy s A N AL VA LN TR

Here the configuration Z is cooled to the integer Z; = Lo(Z).

Because of the assumption Lo(G) = 1, white in mathematical
go can play so well that the configuration Z with Lo(Z) > 1 is
attained. For the strategy translated to cold go, it follows that
Zy = 1, which in both cases ensures white the last move and
thereby proves G| > 0.

The second assertion is obtained analogously. To obtain a cor-
responding characterization of the right stop value, it suffices
to replace the configuration G by the inverse configuration —G.

e

Environmental Go:
An Extended Theory of Temperature

In the previous chapter, we defined the cooling of configurations
in a Conway game by the “taxation” of moves. However, this
approach has two disadvantages in application to go: on the one
hand, a generalization to configurations in which subsequent
play can lead to ko situations is possible only by forbidding
repetition of moves to one of the players, selected in advance.
And on the other hand, it turned out that go players interested
in the combinatorial theory have generally found the taxation
approach not very suggestive, and not only because people do
not like to pay taxes.
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For both of these reasons, Elwyn Berlekamp came up with an
alternative construction for cooling configurations.!* He con-
sidered a configuration to be analyzed according to the tem-
perature as a locally bounded component within larger, quasi
“environmental” configurations. More precisely, he investigated
sums of the given configurations using several standardized con-
figurations. It suffices, then, for such sums to use exclusively
so-called switching games, that is, games of the form {¢,—1}.
It is then possible using such sums to weigh the advantage of
first move in the further course of the game. In this regard, one
should recall that a weighing of winning prospects, though in
another form, as it relates to who moves first in the entire game
(for the purpose of handicapping), belongs to the tradition of
go through the komi system of handicaps.

To make his environmental go construction, whose exact defi-
nition we defer for now, playable in practice, Berlekamp pack-
aged his idea in the following form: in addition to the go board,
on which the stones are placed according to the usual rules, a
sorted deck of cards is used with values 10, 20, 19.5, 19, 18.5,
18,..., 1.5, 1, 0.5. A player whose turn it is may either place
a stone on the board or take the top card from the deck, en-
suring himself additional points at the value of the card. As
compensation for not being able to make the first move, the
second player—in go this is white, in contrast to usual practice
in other games—receives the top card, with value 10.

To get an approximate idea of how the temperature develops
in the course of a game of go, Berlekamp organized games of
environmental go among professional go players. The first such
game was played in 1998 by Rui Naiwei and Jiang Zhujiu, both
players of the highest rank, 9-dan-pro (and now married to each
other). The game ended very quickly, namely, depending on the
country-specific rules, with an advantage of 2.5 for white or 0.5
for black. We can get an idea of the current temperature from
the points at which cards were drawn by the players, at least
if both go professionals were not making the same erroneous
judgment as to the value of the current move.

Before the first move, the cards with values down to 14 were
taken, and in a later game, down to 15. This allows us to con-

14Elwyn Berlekamp, The economist’s view of combinatorial games, in: Richard J.
Nowakowski (ed.), Games of No Chance, Cambridge 1996, pp. 365—405, in particular,
pp. 3941,
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jecture that the temperature of the empty board as a starting
configuration was valued by the players at 14 or a bit higher.
After 17 moves, the cards down to 10.5 had been taken. There-
after, over 200 moves were made on the hoard.

For the theoretical investigation of the cooling of a configuration
it would doubtless be helpful to refine the temperature grid of
the “environmental” switching games. To analyze a cooling by
the value t, a sum of switching games of the form

Er={t|-t}+{t—0|—-t+0}+{t—-20|—t+26}+---

is used. Here the sum extends over all switching games of the
given form with positive temperature. The grid size § > 0 is
chosen to he sufficiently fine.

If the game E; that serves as the environment is played by
itself, it is advantageous for the player whose turn it is to select
from among the remaining switching games the one with the
highest temperature. Since the player to move thereby obtains,
in each of his moves, a score that is higher by ¢ than that of
his opponent, the result, if we ignore a small imprecision of at
most ¢ arising for an odd number of summands, is the minimax
values Lo(E:) = t/2 and Ro(E;) = —£/2.

The cooled minimax values L;(G) and R;(G) of a configura-
tion G can now be approximated, as proven by Berlekamp (see
Note 5 at the end of the chapter), in the following manner,
where the error for a small enough grid size § can be made
arbitrarily small:

Lt(G) = LO(G‘JI“Et)‘"L(](Et) and R,t(G) = R(}(G'FE:)“‘R(}(E-;).

Applications of the generalized thermograph theory to go con-
figurations with ko positions were given by Bill Spight, Martin
Miiller, and Elwyn Berlekamp.!®

15Bill Spight, Extended thermography for multiple kos in Go, in: Computer Games,
Lecture Notes in Computer Sciences 1558, Berlin 1999, pp. 232-252; also in Theoret-
ical Computer Science 252, 2001, pp. 23-43; Martin Miiller, Elwyn Berlekamp, Bill
Spight, Generalized thermography: algorithms, implementation and applications to Go
endgames, Technical Report 96-030, International Computer Science Institute, Berkeley
1996.
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And Chess!?

Configurations that can be represented as disjunctive sums of
subconfigurations almost never occur in chess. Among the few
exceptions are the zugzwang situations, as in the following posi-
tion, which comes from a game played in 1929 between Schweda
and Sika in Brno; it was analyzed in a book by Euwe and
Hooper.®

7.0 T T

iw w W
&%%/%f%

7 7
%}// %ﬁ/_.. %
ﬁ %fﬁ%‘%{fﬁ%

% ..... Wy

The player whose king is forced to move loses. Therefore, each
player attempts to make the last pawn move, and of course, the
promotion of a pawn is also to be prevented. For this reason,
the position can be described and investigated using Conway's
approach. We begin with some simple configurations, and in
order to simplify things, we turn the board by 90 degrees so
that white moves from left to right:

// o
A% =i ={]|}=0
wiy p Vi AW
W - A%\ Kk} =100} =+
vy 7 sy y
B Da=-{(27a|B_&)={+]+} =0

If the black pawn is still on its starting square on the seventh
row, then we have

prs

W Uro-{als | 7. Kx)
={*|*,U ={ | }='T;

*

16Noam D. Elkies, On numbers and endgames: Combinatorial game theory in chess
endgames, in: Richard J. Nowakowski (ed.), Games of No Chance, Cambridge 1996,
pp. 135-150.
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where the second-to-last identity follows because the additional
possible black move to * is no improvement over — t= { | 0},
since it can be immediately “reversed” by white to the original
sole option of 0. For the subconfiguration shown in the diagram
in row h, we have, finally,

R Dao=1%_T,a ),l&/ a, A7 a}
—Tl-: ={‘T|U = =TT+ %,

where the last identity has already been used in the analysis
of go configurations, and the second-to-last identity is again
explained by omitting a reversible move.

Significantly more complex and correspondingly difficult to an-
alyze is the subconfiguration comprising the pawns on rows a
and b. It is equal to T, so that for the depicted configuration,
one has — 1 + #. On account of the relation 1 ||*, known
already from our analysis of go, the player to move, whether
white or black, can win the endgame. White moves h3-h4, to
achieve T — 1 = 0. On the other hand, black cannot win by
moving the h-pawn. However, the move a6-a5 does the trick.

Chapter Notes

1. If white is able to ensure a profit of at least v by moving in a particular
configuration, then she can modify her underlying strategy in such a way
that if her opponent moves first, she can be sure of at least v — 2 points.

To do this, white proceeds as follows:

e if black moves at any time during the game to the original “starting

square,” by which is meant the square on which white would have
played had it been her turn, then white passes. The right to pass,
which was not specifically provided for in the rules, can be granted
to white, since passing does not improve her situation.

otherwise, white plays as though she had moved first, making her first
move according to her original strategy as though she had already
made the first move, independent of whether the starting square is
empty or is occupied by a black stone.
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With this strategy white attains a final configuration that is almost iden-
tical to what she could have obtained had she made the first move. The
only difference is in the start square, which can reduce her winnings by at
most two points.

2. All values that are integers or fractions with a power of two in the denom-
inator can be translated directly without duplicating the winning values.
Thus, for example, in the case that black wins a half a point, there arises
the sequence of moves —1/2={—-1|0}={{|{|}}|{|}} instead of the
corresponding end configuration. However, in most games, including go
and blockbusting, only integer winning values are possible.

3. That the simplified process of cooling a configuration by 1 in fact leads
to the correct result is not at all obvious. The main reason for this spe-
cial property of go configurations is the fact that the score is always a
whole number. Since furthermore, the sides of thermographs are always
arranged horizontally or at a 45° angle, they can run only along such lines
as appear in the following diagram in the range from 0 to 7/8. Then the
mean value of a go configuration must have a denominator of the form
2™ if the temperature has a value of at least 1 — 1/2™. Since for coolings
below or up to a bit above the temperature one always has the equality
Gy ={Gi—t,...| G/ +1t,...}, in a cooling of 1, only the last phase of
1/2™ is critical. Its effect can be examined: no simpler number in the
sense of the simplicity theorem can, as the mean value, lie between the
configurations GY — 1,... on the one hand and G 4+ 1,... on the other.
Concretely, from the assumed existence of a minimum counterexample,
that is, a configuration with the shortest possible length of the game, one
can draw conclusions that lead to a contradiction.

2 -

4. Less direct, but making use of more general concepts, is the approach of
Berlekamp and Wolfe: essentially, the cooling homomorphism G — G, for
go configurations is reversed. This takes place by means of a universally
recursively definable mapping u for an arbitrary Conway configuration H =
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{H',...| H",...}, which can be understood either as a special case of a
so-called overheating operator or as a type of product with (1 4+ *):

H when H is even,
w(H) =4 H+* when H is odd,
{-1+u(H),...,| L +u(H"),...} otherwise.

Like cooling, overheating is also a homomorphism; that is, it is compatible
with disjunctive summation and the greater than or equal relationship:

o u(H+L)=u(H)+u(L);
o the relation H > L always implies w(H) > u(L).

Moreover, for configurations of mathematical go in which the subsequent
play has no ko or seki situations, one always has

G=u(G1) or G=u(G1)+ =

5. Elwyn Berlekamp, Sums of N x 2 Amazons, in: Game Theory, Optimal
Stopping Probability Statistics, Papers in Honor of Thomas S. Ferguson,
Institute of Mathematical Statistics Lecture Notes Monograph Series 35,
Beechwood 2000, pp. 1-34, in particular, pp. 31ff. A simpler proof follows.
We will show inductively that the approximation errors

DL(G, 1) = Lo(G + E)) — L.(G) — Lo(E),
DJZ{G, t] = RD(G + E:,} — Rt(G} — Ro(Et),

are bounded by 2N¢ for values of ¢ involving an integral multiple of the
grid size ¢ defined for the environment E;. Here N denotes the maximal
number of moves that can occur in a game beginning in configuration G.

We begin with the cases G = 0 and ¢t = 0, for which the assertion is
obviously true. For the induction step we analyze the possible moves in
configuration G + E; in order to be able to estimate the approximation
errors recursively. For the configuration G = {G',... | G”,...}, we obtain

Dr(G,t) = max (Ro(G + Ei_s) +t, Ro(G' + Ey)) — Lo(E)) — Li(G)

= Imax
[l

Ro(G+ Ey_5) +t— Ro(Ei_s) —t,
( Ro(G' + Ei) + Ro(E) ) — L(G)

. R, 5(G)+ Dr(G,t - §), _
= max ( Ru(@) + Dr(G, 1) + 2Ro(Ey) ) ~ L2(©)

[ Beos(G) = Li(G) + Dr(Gyt - 3),
= R(G') — t — L(G) + t + 2Ro(E,) + Dr(G', 1)

(=4

Here ¢ + 2Ry(E}) is equal either to zero or to —4§, depending on whether
t is associated with an even or odd multiple of the grid size §. The
induction hypothesis implies the two inequalities |Dgr(G,t — §)| < 2N4
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and |Dg(G',#)| < 2(N — 1)8. If we consider as well the two inequalities
R 5(G) — Le(G) €0 and R,(G') —t — L(G) < 0, which follow from the
properties of the thermograph described in Chapter 24, then one obtains

Dr(G,t) < max (2N, 2(N —1)§) = 2NG.

It remains to establish the inequality Dr(G,t) > —2N4. To do so, we
distinguish the two cases t > t(G) + d and t < £(G) 4+ 4. In the first case,
we have R, ; — L(G) = 0, and thus

Dp(G,t) = Ri—s(G) — Li(G) + Dr(G,t — §) = —2N34.

For t < t(G) left has a move to a configuration G/ with B, (G")—t—L:(G) =
0. If one takes on the existing possible move for ¢t = t(G) for ¢ values with
t{(G) <t < t(G) + 4 as well, then one sees that for all ¢ < +(G) + 4 there
exists a move to a configuration G’ with R,(G") —t — L:(G) > —4. Finally,
we obtain, in this case as well,

DL(G,t} = RL(G"} —t— LL(G} +t+ ZRn(t} -+ DR(G" f}
> 552N —1)8
= —2Nd.
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Misére Games: Loser Wins!

The rules of Conway games can be altered so that the player to move last
loses instead of winning. For such inverse versions can simple criteria
for winning moves be found like those obtained for normal versions using
Grundy numbers?

Back in 1902, in his first analysis of nim, Charles Bouton analyzed the
inverse version of standard nim.! In an inverse game of nim, generally
called a misére version, each player attempts to move in such a way that
he would lose according to the usual rules. Thus he must attempt to force
his opponent to move to an end configuration.

Bouton's result for the inverse of standard nim is remarkably simple:
the player in a winning position moves as in normal nim to a configuration
with nim sum zero, except when the move would result in a configuration
in which all remaining piles consist of a single stone. In this exceptional
case he moves instead to a configuration that consists of an odd number
of single-stone piles. Thereafter, the game proceeds according to mutual
zugzwang, until the game ends with the victory of the player who used the
winning strategy.

In view of other nim variants that we would like to investigate, we
shall express Bouton's result another way: we first define the notion of
cxceptional configuration: these are all configurations that offer the players
differing winning prognoses between the two versions. In standard nim,
these are the configurations cited already in which the remaining piles

ICharles L. Bouton, Nim, a game with a complete mathematical theory, Annals of
Mathematics Series II, 3, 1901/02, pp. 35-39.
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consist of exactly one stone. In the exceptional configurations it is useful
to distinguish them according to their winning prognoses in the normal
version. Then on the one hand, one obtains the configurations of the form
12k that is,

e (),
e 1.1,
e 1.1 1,1, etc.
and on the other hand, configurations of the form 12k+1 namely,
e 1,
e 1.1 1, etc.

Based on this division, the losing configurations in inverse standard
nim correspond to the configurations with nim sum 0, except for the ex-
ceptional configurations 12%, but including the exceptional configurations
12k+1 Analogously, the winning configurations of inverse standard nim in-
clude the configurations with positive nim sum, except for the exceptional
configurations 12571, but including the exceptional configurations 12*.

Such a division of the configurations in standard nim exists in principle,
of course, for other nim variants. There, too, there exists, if one considers
the winning prospects of the normal and miseére versions in parallel, a
division of the configurations into four classes. If one denotes winning
configurations by W and losing configurations by L,? then each of the four
configuration classes can be represented by a pair of letters, where the first
letter is for the normal version, and the second for the misére version:

e W:a WW configuration is a winning configuration in both versions.
e LL:an LL configuration is a losing configuration in both versions.

e WL: a WL configuration is a winning configuration in the normal
version, but a losing configuration in the misére version.

e LW: an LW configuration is a losing configuration in the normal
version, but a winning configuration in the misére version.

2S8ince we are speaking here of winning and losing configurations, the notation W
and L is perhaps more suggestive than the notation that is more usual in the literature,
namely, N for next player wins, and P for previous player wins.
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The exceptional configurations, that is, those that offer different out-
comes for the different versions, consist of the WL and LW configurations.
In the case of standard nim, the WL configurations are all those of the
form 12%T! while the LW configurations are those of the form 12F. In
general, this means that in an arbitrary nim variant, for every exceptional
configuration there exists a move that leads to another exceptional config-
uration. Namely, if there is no such possible move in a given configuration,
then the equal winning prospects between the normal and misére versions
from the subsequent configurations can be transferred to the given config-
uration itself.

To analyze a single version of a nim variant completely, a decomposition
of all configurations into winning and losing configurations must be found.
In the case of the normal version, this is always possible using Grundy
values. In general, if a conjectured decomposition into winning and losing
configurations is to be verified, the following properties must be satisfied.
They relate to the minimax principle in the sense of Zermelo’s theorem and
were established for the normal version of standard nim in Chapter 21. A
winning move must always be offered to the player in a winning position,
but his opponent must not be able to find a move that turns the tables:

e from every W configuration there is a move to an L configuration.
e from an L configuration, every move leads to a W configuration.

In the misére version, the end configuration must be excluded in the first
property, which indeed can be viewed as a W configuration—after all, the
player who just moved has lost—but there is no longer any possible move.

Both versions of a nim variant have been completely analyzed when the
totality of all configurations has been decomposed into the four indicated
classes. To confirm a conjectured configuration, the conditions given in the
following table must be verified:

Normal | LL, LW The Grundy value of the LL and LW configurations
is 0.

Version | WL, WIW  The Grundy values of WL and WW configurations
are nonzero.

LL From an LL configuration there is no move to WL.
Misere | WL From a WL configuration there is no move to LL or
WL.
Version | WW For every move from a WW configuration to an LW
configuration there exists an alternative to LL or W L.
LW For every LW configuration (other than the end con-

figuration) there is always a move to WL.
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Only three of the last four conditions, those relating to the misére ver-
sion, must be clarified a bit:

e for the requirement on LL configurations, in addition to moves to
W L, moves to LL should also be excluded. Such moves are impossible
in any case, due to the properties of the normal version.

e from the viewpoint of the misere variant, it is required of a WW con-
figuration that there always be a move to WL or LL. The Sprague—
Grundy theory for the normal version guarantees at least one move to
LW or LL. If one achieves an LL configuration in this way, then all
is well. Then the requirement formulated in the table is completely
adequate, namely, that for every move from WW to LW there exists
an alternative to LL or W L.

e from the exclusive viewpoint of the misére version, there must exist a
move to LL or WL for every LW configuration. The first possibility
is eliminated, however, for the normal version from the Sprague—
Grundy theory.

The actual use of these conditions can best be understood with the
help of an example. It is natural to check the configuration decomposition
of standard nim as outlined above. The necessary considerations are not
particularly difficult, but in their totality, they are anything but obvious
(see Note 1 at the end of the chapter).

Unfortunately, things get much more complex with other nim variants.
The reason is that configurations in the misére version, in contrast to the
normal way of playing, are no longer necessarily equivalent to piles in stan-
dard nim. In general, in the misére version there are many fewer configura-
tions that are mutually equivalent. This begins already with the fact that
the doubling of a configuration W, that is, the disjunctive sum W + W,
always leads to a losing configuration and is therefore equivalent to the end
configuration 0. On the other hand, in the misére game, the standard nim
configurations 1, 1 and 2, 2 already exhibit different winning prospects. All
in all, this leads to the situation that among the configurations from which
a game would last at most six moves, there are about 2*!71780 inequivalent
configurations.? It is thus hardly likely that one would be able to charac-
terize completely this astronomical number of configurations using easily
calculable data such as the Grundy values used for analysis of the normal
version. In spite of this pessimistic prognosis, there are a few bright spots

3 John H. Conway, On Numbers and Games, second edition, Natick, MA 2002, Chap-
ter 12; E. Berlekamp, J. Conway, R. Guy, Winning Ways, second edition, Natick, MA
2003, volume 2, Chapter 13.
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to be found for the misére games. For example, there are nim variants in
which for the misere game as well, all configurations are equivalent to nim
piles. The recursive criterion is as follows:

If all possible moves in a given configuration lead to piles in
standard nim, of which at least one pile contains at most one
stone, then this configuration in the misére game is itself equiv-
alent to a nim pile. Its size is equal to the smallest natural
number that is not represented as the size of one of the piles
reachable in one move.

This theorem of Conway is based on the fact that all moves that go
beyond the possibilities of standard nim can be dispensed with (see Note 2
at the end of the chapter). A consequence of the theorem is that some
inverse nim variants can be reduced recursively to the inverse standard
nim; that is, within every possible course of the game, each configuration
is replaced by an equivalent nim pile. For example, this works for all sub-
traction games, which were introduced in their normal form in Chapter 22.
For these, Ferguson discovered in 1974 the decisive property that every
pile with Grundy number 0 permits a move resulting in a pile with Grundy
number 1.* Thus in subtraction nim, for every nonempty pile there is a
move that leads to a pile with Grundy number 0 or 1, and that is precisely
the property that the theorem requires for its hypothesis.

In the same sense, Lasker nim is tame, as Conway calls the misére
version that is reducible to standard nim. As a consequence of Conway's
theorem, the truth of this fact is at once apparent, since, as we have seen
in Chapter 22, in Lasker nim there is only one pile with Grundy number 0,
namely, the empty pile. By a somewhat different route, Ferguson solved in
1974 the misére version of Lasker nim together with the subtraction games.

Based on positional equivalence, tame nim games in the misére version
are won the same way as in standard nim. Their exceptional configurations
comprise the configurations all of whose nim piles have Grundy values 0
and 1:

e a WL configuration is a nim configuration with nim sum 0 all of
whose piles have Grundy value 0 or 1.

e an LW configuration is a nim configuration with nim sum 1 all of
whose piles have Grundy value 0 or 1.

4T. 8. Ferguson, On sums of graph games with last player losing, International Jour-
nal of Game Theory 3, 1974, pp. 159-167. See also “Nim Variants en Masse” in Chap-
ter 22.
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Other nim games, like bowling nim, are not tame at all; that is, not all
of their configurations are equivalent in the misére version to a single pile
of standard nim. However, such a misére game can be investigated purely
theoretically in the following way, or at least one can make the attempt:
starting from a complete analysis of the normal version, which is always
relatively easy using Grundy values, one searches for all exceptional config-
urations, that is, all LW and WL configurations. If all of these have been
found, then one can immediately determine the winning prospects for the
misere version from those of the normal version. Since a configuration can
be an exceptional configuration only if another exceptional configuration is
reachable from it in a single move, it is possible in principle, starting from
the end configuration as the first exceptional configuration, to determine all
the others recursively. Unfortunately, there are generally infinitely many
exceptional configurations, so that one must attempt to guess the entire
range of exceptional configurations based on empirical data and then to
confirm that guess. This path has shown itself useful especially in the case
of bowling nim. It was first used by William Sibert in the mid-1970s. His
extremely complex results were published only in 1992, in the same year
in which Ranan Banerji and Charles Dunning carried out an independent
analysis of bowling nim.® Also in the same year came the significant re-
finement of the Sibert-Conway decomposition by Thane Plambeck. Plam-
back succeeded in obtaining a complete analysis of the misére versions of
other octal games. His classification of configurations is based on a weight
function, in addition to the Grundy values, chosen carefully for each nim
variant. Here each pile size has a particular weight. In a configuration
consisting of several piles, these weights are added.

Let us look now at the results on bowling nim obtained by Sibert and
Conway. Their starting point is an analysis of normal bowling nim based
on the Grundy values, repeating from 72 with period 12, as shown in Ta-
ble 26.1.

We let E(a,b,...) denote the configurations that contain an even num-
ber of piles of sizes a, b, .... For example, 2,2,2,3 and 2,2, 3, 3 are configu-
rations in F(2,3). Similarly, we let O(a,b,...) denote the set of configura-
tions with an odd number of piles of sizes a,b,.... For example, 1,2,2 is a
configuration in (1, 2). With this notation we can now list all the excep-
tional configurations of bowling nim as follows, according to the following

example:

SW.L. Sibert, J. H. Conway, Mathematical Kayles, International Journal of Game
Theory 20, 1992, pp. 237-246.

SRanan B. Banerji, Charles A. Dunning, On misére games, Cybernetics and Systems
23 1992, pp. 221-228.
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n |g(n) gn+12) g(n+24) g(n+ 36) g(n+ 48) g(n + 60) g(n + 72)
0] 0 4 4 4 4 4 4
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3| 3 7 8 3 8 8 8
4 1 1 b5} 1 1 1 1
D 4 4 4 4 4 4 4
6| 3 3 7 7 T T 7
T 2 2 2 2 2 2 2
8 1 1 1 1 1 1 1
9 4 4 8 8 4 8 8
10 2 6 6 2 2 [§] 2
11| 6 7 7 7 7 T 7

Table 26.1. Bowling configurations with one pile.

e LW configurations, that is, misére winning configurations with Grundy
value (:

E(5)E(4,1) such as 5,5,4,4,4,1,
E(17,12,9)E(20,4,1) 17,9.9.9,20,1,
15E(17,12,9)E(20,4.1) 25,17, 9.

e WL configurations, that is, the misére losing configurations with
nonzero Grundy value:

0(5)0(4,1) 5,54,1,1,
E(5)0(4,1)) 4,
O(9)E(4,1) 9,1,1,
12E(4,1) 12,4,1,
E(17,12, 9)0(20 4,1) 17,9,20,4, 4,
250(9)0(4,1) 25,9,1.

In particular, there are no exceptional configurations among those con-
taining at least one pile of 26 or more stones. This makes it somewhat
easier to verify the given listing. To do this, we first look only at con-
figurations each of whose piles contains at most 53 stones. From another
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configuration, that is, from one with at least one pile of 54 or more stones,
there is no possible move that leads to one of the listed configurations.
Therefore, exceptional configurations with such large piles are impossible.
In an actual proof, the configurations whose piles contain at most 53 stones
are characterized by the frequency with which the individual pile sizes ap-
pear. It turns out that one can determine for each of these frequencies,
except from the starting values 0 and 1, whether it is even or odd. One
then proves the periodicity by considering finitely many cases, where no
number larger than 4 needs to be considered.

A quite different approach for the investigation of such periodicities in
the winning prospects of configurations of misére variants, more suitable
as the basis for extensive computer calculations, was published by Dean
Allemang in 2001.7 Allemang’s results are based on the following basic
idea, which actually is an analogue of the approach of Lasker that was
described in Chapter 22. It is true that the general equivalence of misere
configurations in reference to summands with arbitrary nim configurations
cannot be practically simplified due to the already mentioned astronomical
variety, even with piles with a small number of moves. However, for the
analysis of a particular nim variant it suffices fully if a weaker equivalence
related to the configurations of this one quite special nim variant is in-
vestigated. And in fact, there are frequently rather drastic simplifications
that can be made. What is studied is piles or sums of such piles that can
be replaced by smaller piles or sums of a smaller number of piles within
configurations of the misére variant under consideration, particularly if the
other piles of the given configuration satisfy certain properties, such as in
relation to their size. The complete solution of octal games found by Alle-
mang such as, for example, (.53, 0.54, and 0.72 is based on two theorems
that make it possible to prove (infinite) periodicities by checking finitely
many periodicity conditions, and indeed, without reference to the normal
rules of the nim variant being studied. Allemang’s first periodicity theorem
relates to the frequency with which a pile of a particular size occurs within
a configuration, while his second periodicity theorem relates to the size of
the pile.

However, the number of conditions to be checked using Allemang’s pro-
cedure can be so large that a complete analysis cannot be practically carried
out in this way. Thus, for example, Allemang gives 3'4* for the number
of conditions to be checked in bowling nim, which in decimal notation is a
69-digit number.

"Dean T. Allemang, Generalized genus sequences for misére octal games, Interna-
tronal Journal of Game Theory 30, 2001, pp. 539-556. The results presented stem from
the author’'s master’s thesis of 1984.
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Nimbi

A nim variant that always begins with the same initial config-
uration is Nimbi. It was invented by the Dane Piet Hein, the
coinventor of Hex, around 1950, and it was marketed commer-
cially for several years. Nimbi is played with 12 stones, which at
the start of the game are positioned on the intersection points
of the same number of lines, as in the figure below:

As usual, the players alternate moves. A move consists of the
removal of at least one stone. However, a player may remove
more than one stone, on the condition that the stones lie in
unbroken sequence on one of the 12 lines. The player who is
forced to take the last stone is the loser; that is, the game is
played with misére rules. Of course, one may also play by the
“normal” rules, by which the last player to move wins.

Since Nimbi always begins in the same configuration, and so
there are only 2'2 = 4096 possible configurations, a computer
analysis is not too difficult to carry out. The winning prospects
of all configurations are determined by a minimax process that
examines the moves in reverse order and then stores them for
further computation (see Note 3 at the end of the chapter). The
first analysis, published by Avierzi Fraenkel and Hans Herda in
1980, gave the result that the starting configuration is an LL
configuration; that is, in both versions it is a losing configura-
tion.® This is noteworthy in that losing conficurations in nim
games become increasingly rare as the length of the game in-
creases; on the one hand, the first player has a stronger influence
than his opponent on the shape of the game, and on the other

8 Avierzi 8. Fraenkel, Hans Herda, Never rush to be the first in playing Nimbi, Math-
ematics Magazine 53, 1980, pp. 21-26.
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hand, a configuration is a losing one only if every configuration
achievable in one move is a winning one.?

Chapter Notes

1. Here are the conditions:

e a WL configuration, that is, one of the form 1?**!  can arise by a

move only if a pile is cleared down to a single stone or completely
removed. In the first case, the configuration before the move has the
form 1%"m with m > 1, while in the second case, it is 12**'m with
m > 0. Configurations of the form LI, that is, those with nim sum
0 that are not of the form 1°*, are not to be found here. Moves from
LL to WL are thus impossible.

e from a WL configuration, that is, a configuration of the form 1****,
there are only moves to configurations of the form 1°*, which are
exclusively LW configurations. Thus LL and W L configurations are
unreachable from WL in a single move.

e an LW configuration, that is, one of the form 1?*, can arise in one
move only if a pile is removed completely or down to a single stone. In
the first case, the configuration before the move has the form 12¥ " *m
with m > 1, while in the second case it is 1**m with m > 0. Except
for the configurations 12*m with m = 1, these are all configurations of
type WIW. Each of them offers an alternative move to a configuration
of the form 12%*2 that is, to W L.

e from an LW configuration that is not the end configuration, that is,
a configuration of the form 12**2, the only possible move is to 12¥+1,
that is, to a WL configuration.

2. We start with the piles of standard nim, =0, 1,2, %3,..., which are de-
termined formally from the set of possible moves

*D:{ },

*1:{*0}‘

*x2 = {#0, %1},

#*3 = {*0,%1,%2},....

9David Singmaster, Almost all games are first person games, Eureka 41, 1981, pp. 33—
37; David Singmaster, Almost all partizan games are first person and almost all impartial
games are maximal, Journal of Combinatorics, Information and System Sciences T,
1992, pp. 270-274.
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The theorem then states that by adding certain additional possible moves,
there arise misére-equivalent configurations. In detail, we have the follow-
ing equivalences:

#0 = %1, %a,*b,... with a,b,...> 2,
1 = =0, %a, =b,... with a,b, ... > 2,
#2 = %0, %1, *a,*b,... with a,b,...> 3,

#3 = %0, %1, 2, #a, xb, ... with a,b,...>4,....

Each completed move leads to the affected nim pile being enlarged. Here
the case of the empty nim pile 0 is an important special case, since the
theorem depends on the assumption that one of the possible moves leads
to #0 or 1. To that extent, in the first case, the move to the one-stone pile
#*1 must be present among the added moves. The equivalence expressed
by the theorem means concretely the following: if any nim pile #m is
a summand of a configuration presented as a disjunctive sum, then the
winning prospects do not change in the misére game if the nim pile *m is
replaced by a configuration with an appropriately increased set of possible
moves. That is, the player who was in a winning position continues to
possess a winning strategy. That is what we now wish to prove:

e the player in a winning position simply ignores the additional possible
moves, except in the case m = 0, when %0 is the only remaining
pile. In this case, the player moves to %1, so that he wins after the
opponent’s forced move to *0.

e on the other hand, if the player in the losing position takes one of the
additional moves at any time in the course of the game and thereby
increases the affected nim piles, then the player in the winning posi-
tion simply plays back to =m.

This construction is a special case of generating equivalent configurations
using reversible moves. This procedure works for all Conway games. In
misére versions, however, a final clause is necessary that ensures a reply
leading to a losing position for the case that no further component is avail-
able.

We note finally that configurations such as {2 } and { %2, 3 } not only do
not satisfy the conditions of the theorem, but are actually not equivalent
to a nim pile in the misére game.

The winning prospects for all configurations can be stored in a Boolean
array of 4096 values. The numbering of the configurations is best done in
binary. Thus each binary digit represents a “square” of the game board;
in a given configuration, a stone on a square is represented by a binary 1,
while a stone that has been removed is represented by a 0. In this way,
moves can be encoded. The following figure gives an example of an opening
move:




Combinatorial Games 261

After move number 36,
the configuration 4059
results from starting
configuration 4095.

For the minimax analysis, the configurations can be investigated in the

normal order 0, 1,2, ...,4095, since this order ensures that a configuration
is investigated only after all of its subsequent configurations have been
analyzed.

To store the winning prospects of all the configurations, in the era of
megabyte-sized storage one could just as well use a table in a relational
database rather than binary encoding, in which case the configurations
can be stored in just about any way desired. Rapid access is accomplished
with an index in the database. In particular, this possibility is of interest
for games whose configurations possess a more complex structure.
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The Computer as Game Partner

What is going on inside the “mind” of a chess computer?

There is a subfield of computer science called artificial intelligence, but
let there be no illusion that a computer thinks the way human beings do.
Nonetheless, a computer can be programmed to behave as though it were
thinking. A good example of this phenomenon is that of chess computers
and programs. But how can one program a computer so that it can win at
chess even under the time constraints of tournament rules? The difficulties
to be overcome are principally of a quantitative nature, since the minimax
principle offers at least a theoretical possibility of calculating all the win-
ning prospects algorithmically. However, due to the enormous number of
possible moves that arise from a given configuration, such an analysis must
be relegated to the world of theory except for certain manageable endgame
situations. Of course, the minimax principle is nothing to be sneezed at.
Indeed, it represents a player’s strategy of playing it safe so that his op-
ponent can do him the least harm. But how can minimax techniques be
simplified so that in practice, within the capabilities of computer hardware
and software, acceptable results can be achieved in a limited amount of
computation?

In the autumn of 1977, at the Berlin radio and television exhibition, the
“Chess Challenger 3,” the first of a series of chess computers, was presented.
Equipped with an 8-bit microprocessor and only a few kilobytes of program
space and even less RAM, its play was rather poor. Every year some new
version of a chess computer would appear around Christmastime, always
with some new feature—sensor board, printer, speech capability. As hard-
ware improved, the machines’ playing strength improved as well, especially

262
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with the shift to PC programs. Nowadays, one is quite well accustomed
to playing games against computers, and one is also accustomed to getting
soundly beaten. Good chess programs play easily at a level that offers a
tournament player little chance of success. And even the reigning world
chess champion Garry Kasparov was beaten in a tournament by the com-
puter Deep Blue. A match in 2002 against Kasparov's successor, Kramnik,
and the chess program Deep Fritz ended in a draw.

Aside from the fraudulent chess automaton mentioned in Chapter 18,
the first chess-playing machine was invented in 1890 by the Spaniard Torres
v Quevedo (1852-1936). It was capable of playing endgames consisting of
king and rook against a solitary king. The electromechanical construction
was designed specifically for this special situation, and thus contained no
universal computational elements, in contrast to the “analytical engine”
designed by Charles Babbage some 60 years earlier. A second version,
from the year 1920, is on display at the University of Madrid.

The two true pioneers of computer chess were the American Claude
Shannon (1916-2001) and the Englishman Alan Turing (1912-1954). In
the middle of the 20" century, these two men independently, and on an
entirely theoretical level, thought about how a computing machine might
play chess. It would appear that the time was ripe for the development of
universally programmable computers: in 1936, Konrad Zuse (1910-1995)
began experiments aimed particularly at chess,? while in the United States
there appeared between 1939 and 1944 the Mark I, which operated with
relays, and then in the years 1943-1945 the first electronic computer, with
17000 vacuum tubes: the ENIAC. The first von Neumann machine, that
is, the first computer with storage for data and programs, was the EDSAC
computer, which was completed in England in 1949.

..
[

oy
<l 3

Computers: What They Can Do

To give an idea of how a game program works, it would not
do here to explain the workings of a computer in the minutest

LA picture can be seen in Dieter Steinwender, Frederic A. Friedel, Schach am PC,
Haar 1995, p. 32.

?In a document from the year 1945, Das Plankalkil, as Zuse called his symbolic
language for carrying out computations, the last chapter is devoted to the theory of chess.
There, moves and tests of certain positional properties are represented in Zuse’s notation.
Zuse's writing became better known after it was reprinted in 1972. As Zuse then noted,
he learned to play chess in order to carry out his investigations. K. Zuse, Das Flankalkil,
Kommentierter Nachdruck der Fassung von 1945, Gesellschaft fiir Mathematik und
Datenverarbeitung, Sankt Augustin 1972, pp. 35f., 235-285.
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detail. Therefore, we shall carry on our discussion at a level
above a number of lower system levels, namely, that of a mod-
ern programming language such as Pascal, C, C++, Fortran,
and Basic.? These languages make it possible to describe math-
ematical algorithms step by step, that is, broken down into el-
ementary arithmetic and logical operations, in a formulaic way
so that they can be carried out by a computer using compilers
and other system programs.

Intermediate results can be stored for later use, which is done
using program variables, which can be given names with mnemonic
values. These are certainly much easier to manage than the
numbered storage cells of the computer’s memory. Each vari-
able can store an integer up to a certain size, which depends on
the programming language and the computer’s capacity. For
example, if one wished to store the result of the calculation
234 x 123 — 34 x 91 under the name Alpha, then one would
write (more or less, depending on the details of the program-
ming language)

Alpha = 234 * 123 - 34 * 91
With instructions like

Beta = 2 * Alpha + 15
Alpha = Alpha - 1

the values stored under the name Alpha can be read and further
processed, where in the second example, the value of Alpha
is altered. The last instruction shows that variables have a
character different from that of mathematical symbols, whose
value within a mathematical statement is always fixed.

In addition to integers, one can use variables to store floating-
point numbers, Boolean values, and text characters. Another
convenience of variable storage is that logically connected data
can be processed together. For example, a variable named
Board can contain all the information, translated into numbers,
about the constellation of figures in a chess position. With the
instruction

NewBoard = Board

3Though much has happened since then, Niklaus Wirth's 1975 book, Algorithms and
Data Structure, still has much to recommend it.
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the entire board configuration is copied, for example, for the
purpose of making the changes required by a move in a chess
game. One can also apply coordinates to such variables in order
to index the various parts of a variable that may represent an
array. Thus white’s rook can be moved to square ad with the
following command:

NewBoard(1, 4).Piece = Rook
NewBoard(1l, 4).Color = White

It is assumed here that the variables Rook and White already
possess characteristic values that allow them to be distinguished
from other colors, namely Black and Undefined, and these val-
ues do not change during the entire calculation. For such par-
ticular use, most programming languages permit the definition
of constants.

Normally, the instructions of a computer program are carried
out sequentially. However, the order of execution can be made
dependent on intermediate results. For example, we test the
number of squares s that a white rook can advance from the
square (2, 3), that is, b3:

FOR s =1 TO 7

IF 3 + s > 8 THEN EXIT FOR
GoalSquare = Board(2, 3 + s)

IF GoalSquare.Color = White THEN EXIT
FOR

If the white king is not in check, then the
move is legal and will be processed

IF GoalSquare.Color = Black THEN EXIT
FOR

NEXT s

In a real game program it would hardly be worthwhile to inves-
tigate such a special case. However, it is clear that the length
that a white rook can travel is limited. It can move only until it
reaches the edge of the board, the square before that occupied
by another white piece, or a square occupied by an enemy piece,
which it can then capture, and each of these three contingencies
is noted by an EXIT FOR, which terminates the loop.

— .
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Shannon was a researcher at Bell Laboratories. He is best known as
the founder of information theory, which goes back to a 1948 article.? A
vear later, he gave a lecture in which he presented his ideas on computer
chess, which he later published in two articles.” Focusing on the technical
aspects, Shannon briefly sketched the principles of computers and pro-
gramming. Then he made a suggestion as to how a chess position might
be stored in a computer. Each type of piece is given a unique identifica-
tion number: a white pawn has the value 1, a knight 2, bishop 3, rook
4, queen 5, and king 6. For black, the corresponding negative numbers
are used, and 0 corresponds to an empty square. For each square of the
board there is a cell in computer memory available, which makes it possi-
ble to store an entire chess position. That is, other than such additional
information as whose turn it is, whether castling is still permitted, en pas-
sant capture, and the 50-move rule, 64 cells of memory suffice to store
a configuration.

Shannon describes the minimax principle as fundamental for a chess
program. That is, the two players generate lists of possible moves, and the
best move is taken, on the assumption that the opponent will respond with
what he thinks is his best move. Shannon notes that a complete analysis
will be impossible. As a way out of the difficulty, he suggests that only
the first few moves of possible variants be investigated and the winning
prospects of the configurations reached be evaluated. For this, Shannon
uses the usual unit of measure for the worth of the pieces, where a pawn is
worth one point, knight and bishop three, rook five, and queen nine. Since
the king must not be captured, it is given a value of 200, so that its loss
will never be weighed against other advantages. The evaluation is refined
by giving positive and negative points for positional considerations. Thus,
for example, Shannon counted negative 0.5 points for an isolated pawn,
backward pawn, or doubled pawn, while mobility was rewarded with 0.1
points for each possible move. The difference between white’s and black’s
point score was used to evaluate each side’s winning prospects.

To evaluate a variant realistically, it must become stabilized, according
to Shannon. Thus it would make no sense to evaluate positions in the

4Less well known are Shannon’s later ideas, which he worked out with the blackjack
expert Edward Thorp, on irregularities in roulette. Anecdotes on this theme appeaer in
the novel The Eudaemonic Pie, by Thomas A. Bass (1985). See also Chips im Schuh,
Der Spiegel 30, 1990, pp. 152-154.

5C.E. Shannon, Programming a computer for playing chess, Philosophical Maga-
zine 41, 1950, pp. 256-275, reprinted in in David N. L. Levy, Compendium of Computer
Chess, London 1988, pp. 2-13; C. E. Shannon, A chess-playing machine, Scientific Amer-
ican 182, February 1950, pp. 48-51, reprinted in David N. L. Levy, Computer Games 1,
New York 1988, pp. 81-88. Both articles were also reprinted in Claude Elwood Shannon,
Collected Papers, New York 1993, pp. 637-656, 657-666.
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midst of an exchange of pieces, since even the stupidest capture of a pawn
by a queen would seem favorable, since it apparently brings material gain.
Such shortcomings are overcome if winning prospects are evaluated only
for “quiescent” positions, meaning positions in which the opponent cannot
effect large changes in the evaluation with his next move. This quiescence
search is still today a significant part of every chess program.

Shannon describes two different approaches to investigating moves,
which he called A and B strategies, terminology in use to this day. The
difference is that either all moves, with the exception of quiescence search,
are investigated to a certain level, or else only selected variants, which are
investigated even more deeply. There are sharp limits placed on the A
strategy because of the enormous number of possible moves; consider, for
example, that there are 20 possible first moves. Using that figure, there
are about 20* = 160 000 variants of only two double moves. A preselection
of plausible moves, such as those made naturally by an experienced chess
player, would thus be extremely useful. This would prevent the computer
from wasting most of its time exploring senseless variants, by which is
meant variants that contain at least one move that is clearly not the most
promising for the player in question. For example, it makes no sense for
white to investigate the opening move a2-a3. On the other hand, as one
knows from key moves in chess problems, an unusual move can introduce
a surprising turn of events.

The selective B strategy is available to a good chess player through
long experience. It allows him to recognize typical patterns in a position
quickly, patterns that in fact have names: double pawn, free pawn, isolated
pawn, backward pawn, linked pawns, open lines, block, protection, sacri-
fice, tempo, fork, exchange, quality, zugzwang, discovered check, double
check. Each of these terms is linked in the player's mind with a library
of experience: which squares and pieces are threatened, which pieces are
important, and what should one do about it?7 And if the player overlooks
a trap in the guise of what seems an insignificant variant, it can prove dis-
astrous in a game. On the other hand, such an experience will be added
to the player's storehouse of knowledge. Without having to change his
“program,” a chess player can learn something new. With a great amount
of practice and practical experience, he can eventually improve his play to
the level of a master.

A translation of this human approach to a static program adaptable in
at most a few parameters has never been achieved. Therefore, most chess
programs use strategy A; that is, there are no a priori absurd moves that are
excluded. The good results that are nonetheless obtained are due in large
measure to the progress in hardware. Even a modest personal computer is
much superior in both speed and storage capacity to a mainframe computer
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of the 1960s. Thus in 1995, the benchmark of evaluating 100000 positions
per second using off-the-shelf hardware and software was achieved in 1995.
From a purely pragmatic viewpoint, the inelegant brute-force method of
the A strategy can be used without further ado.

In 1936, Alan Turing, the second pioneer of computer chess, came up
with the idea of a theoretical computer, now called a Turing machine, in
order to investigate the limits of algorithmic computation, a topic to which
we shall return in the next chapter. After the outbreak of World War II,
Turing worked in a department of the British intelligence service on the
decryption of the German ENIGMA cipher machine. The success of this
special scientific unit, to which belonged two well-known chess players we
might add, is often viewed as decisive in the outcome of the war, and a
reason that much of their work is still classified. Turing, who was said
not to have been a good chess player, probably began around that time
to search for an algorithm that would find a more or less acceptable move
from any given chess position. To that end, he sought a way of evaluating
positions and their consequences in a way that was simple yet led generally
to correct results.

Turing’s approach is very similar to that of Shannon; if Turing’s re-
flections were perhaps not so all encompassing as Shannon’s, they were
somewhat more concrete. Like Shannon, he assigned numerical values to
the pieces: 1000,10,5,3.5,3,1 for king, queen, rook, bishop, knight, and
pawn. Like Shannon, he refined these basic values on the basis of positional
properties by measuring their mobility. For each piece he also counted the
number of possible moves, with special valuations for capturing moves and
those that offered check. Finally, to obtain a total value of a player's po-
sition, he added the material and mobility valuations. Unlike Shannon,
Turing used the quotient of the two players’ values to compare the posi-
tions of the two players.

Turing’s algorithm generally operated at a search depth of two moves.
That is, in the role of white, all of white’s moves are evaluated together
with all of black’s possible replies. Then, within the context of a quiescence
search, an analysis was made of all subsequent moves for which on every
move:

e a piece captured in the previous move is itelf captured;
e a piece captures a higher-valued piece;
e an unprotected piece is captured;

e the opposing king is checkmated.
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White moves Qd3xd6, and black answers with Rc8-d8,
winning the white queen. White resigns.

Figure 27.1. Before Turing’s algorithm made a bad move.

Although Turing’s algorithm was never actually programmed, it makes
possible a formal, purely mechanical game. In a game played in 1952,
Turing played using his algorithm against the amateur player Alick Glennie
for 29 moves.® The result was a threatened block that was overlooked
when Turing’s algorithm captured an only indirectly protected pawn with
the queen. The loss of the queen one and one-half double moves later
was beyond the search depth—a quiescence search is not provided for such
situations. Figure 27.1 shows the game before the fatal move.

Although Turing’s algorithm had made errors before that, for example,
when it failed to encircle a bishop with pawns, and although his opponent
did not make use of all the opportunities provided him, it is nonetheless
noteworthy how much Turing’s algorithm accomplished with limited means,
roughly equivalent to the power of a casual player. Even the inglorious end
of the game exposed a significant problem, today called the horizon effect.
No matter how refined a quiescence search is, a program will always be too
“nearsighted” at the end of its search depth for certain developments, such
as when a human opponent sacrifices material for a positional advantage
with attack opportunities, even though a direct checkmate is not apparent
either to man or machine.

Although today’s chess programs operate according to the A strategy,
they do not do so precisely in the way that Shannon envisioned. Namely,
the different move variants are not given equal weight in searching, and
there are exceptions not only for the quiescence search as suggested by
Shannon. In the analysis, those moves are left unconsidered that demon-
strably do not influence the outcome. But which moves are these, and how
can they be determined? Let us put ourselves in the situation of a chess
player whose turn it is, who is currently examining a possible move that

6 Alan Turing, Digital computers applied to games, in B.V. Bowden, Faster Than
Thought, London 1953, pp. 286-295; reprinted in David N.L. Levy, Compendium of
Computer Chess, London 1988, pp. 14-19; the game itself is printed in Frederic A.
Friedel, Schach am PC, Haar 1995.
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appears to be a good one. If we ourselves find a reply by our opponent that
would be bad for us, we will classify our plan as “refuted,” and discard it
at once. In particular, it would be completely senseless to investigate other
possible replies by our opponent. Whether the opponent possesses even
better refutations and how bad the move that we are considering actually
is have no practical meaning.

What does this model tell us? Moves that do bring us sufficiently satis-
factory results due to a discovered refutation do not need to be considered
further. What “satisfactory” means in this regard can vary. Usually, it
is the case that the winning prospects of another move have already been
investigated sufficiently precisely and have met the threshold for further
investigation. Moves that do not meet these requirements are relatively
refuted and and not investigated further. One might also have the case
that the minimum requirements are formulated at the start of the game
as an absolute threshold without the knowledge of whether such a move
actually exists. In this approach as well, refuted moves are not considered
further. However, in contrast to the first case, it can happen that all moves
are rejected if there is no move that is sufficiently good. In this exceptional
case the analysis must be repeated with a lowered threshold.

The technique of no longer considering refuted moves can also be used
at a later stage in the analysis of move variants. Here both players can
focus on the results of variants with several branches that have already
been investigated. For organizing the minimal requirements on such vari-
ants two parameters are used, whose values are constantly updated as the
variant is explored. Since these values are generally denoted by the Greek
letters e and 3, the procedure has taken on the name alpha-beta algorithm.
The alpha value describes the minimal requirement of white for a configu-
ration. Whenever that requirement is not met, white seeks success along
a different path; that is, the position in question is never reached. On the
other hand, the beta value holds the minimal requirements of the opponent
black. That is, if the position makes possible a move with which white can
be ensured more than the beta value, then black will try to hinder the ar-
rival at this position. Together, the parameters give a region of acceptance
encompassing all numbers that are at least o and at most 3. All variants
that lead to positions whose value is outside this region can be prevented
by one or another of the players. Since every branching and already in-
vestigated variant can bring further restrictions, the acceptance region can
never get larger as the analysis progresses; it can only get smaller or remain
the same.

How the alpha—beta algorithm works can best be understood with the
help of an example. The two simple games that we wish to investigate are
represented as tree graphs, which we first saw in Chapter 18, where the
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A Based on the analysis of move a,
white moves move b is of interest to white only if

/ \/'\e is guaranteed at least o = 3.
black moves

/ \ / % X two a-cutoffs (with o = 3)

Figure 27.2. Two o cutoffs.

variants are investigated in order from left to right. In the first example,
which is depicted in Figure 27.2, the positions indicated with question
marks instead of a win level are insignificant for the determination of the
minimax value.

If white has investigated the left move a and thus realized that it guar-
antees her a score of 3, then she will be interested in another variant only if
she is guaranteed a score of at least o« = 3. However, with move b, the first
reply r shows that white can expect no such guarantee from that move.
Therefore, further moves such as s and t need not be considered, leading
to « cutoffs.

Conversely, if black’s minimal requirements are not satisfied, then the
result is a 3 cutoff. To obtain an example, let us modify the game we have
just been studying so that with move q no end position is reached. The
resulting position is shown in Figure 27.3.

In that figure as well, the scores that have heen replaced with question
marks are insignificant, since the move q is bad for black in any case.
Since black can limit white’s score to 3 with move p, black need grant his
opponent no score higher than 3 within the variant beginning with move
a. The alternative move q thus fails on account of the reply y.

Although the principle of alpha and heta cutoffs is very plausible and
is implicitly used by every good chess player, it took almost a decade from
the first work of Shannon and Turing before it was recognized in chess
programming. The first approaches are contained in the 1958 description
of a conceptual program by Allen Newell, J.C. Shaw, and H. A. Simon,?
who organized their minimax search on the basis of a one-sided accep-
tance threshold. The first move that exceeded this threshold was chosen,
where cutoffs in later moves were not yet mentioned explicitly. It took
another several years before the alpha-beta algorithm was developed in

7 Allen Newell, J. C. Shaw, H. A. Simon, Chess-playing programs and the problem of
complexity, IBM Journal for Research and Development 2, 1958, pp. 320-335; reprinted
in David N. L. Levy, Computer Games I, New York 1988, pp. 89-115; David N. L. Levy,
Compendium of Computer Chess, London 1988, pp. 20-42.
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white moves a /\

Based on the analysis of move p,
P 9 move qis of interest to black only if
white can obtain at most p = 3.
white moves 3 y 2
/ X B-cutoff (with B = 3)

5 ?

black moves

Figure 27.3. A 3 cutoff.

its full form.® This is noteworthy in that the alpha-beta algorithm is sig-
nificantly faster than the normal minimax procedure, so that in the same
amount of computing time, the search depth can generally be almost dou-
bled (See Note 1 at the end of the chapter). In contrast to the normal
minimax search, the requisite expense of searching in the alpha—beta algo-
rithm depends on the order in which the moves are investigated. Namely,
if one investigates a good move first, whether due to a clever choice or mere
chance, the result will be a large number of cutoffs, which greatly reduces
the computation time. But how can such promising moves be recognized?
In practice, a number of approaches have been tried. Since their efficiency
is never ensured in every particular case, but has nonetheless been proven
in practice, one speaks of heuristic methods:

e variants that have been found to be good in a search with limited
depth, say in the investigation of the previous move, are certainly
promising.

e capture moves, particularly when they involve a return capture, are
often advantageous.

e also promising are moves that have been shown to be good in parallel
variants. The technique used here is called the killer heuristic. Here
the best moves are registered statistically so that they can be selected
first for other variants.

e it seems intuitively plausible that a move can be good only if it opens
up opportunities in such a way that another move made by the same
player would provide a measurable improvement in the position. Here

8 A standard reference on the alpha-beta algorithm that also considers the historical
development is Donald E. Knuth, Ronald W. Moore, An analysis of Alpha—Beta prun-
ing, Artificial Intelligence 6, 1975, 203-326. See also Alexander Reinefeld, Spielbaum-
Suchverfahren, Informatik Fachberichte 200, Berlin 1989, pp. 21 ff.
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the imagined denial of a turn to the opponent has given this approach
the name null move. The null move technique is used by some pro-
grams such as the PC program Fritz, often for forward pruning in
the sense of a B strategy. However, this type of action can lead to
quite delicate situations, especially in the endgame, since the right to
move, such as in zugzwang situations, is not always an advantage.

Furthermore, the number of cutoffs can be increased by a “hopefulness”
principle, in which a priori requirements are formulated. Here, on the basis
of an analysis with limited search depth an alpha—heta search window is
specified, for which then a move variant must he found that lies within
the window.

Null Window Search

Generally, the numbers used for the evaluation of positions on
the search horizon are normalized so that they are always inte-
gers. In this case, the minimax values that are calculated from
these are also integers. An alpha—beta search window that lies
in the space between integers cannot then contain a minimax
value, and one therefore speaks of a null window search. Of
course, the calculation of a minimax value using such an ap-
proach is not to be expected. However, as we shall see, the
alpha—beta algorithm is usually programmed in such a way that
in a complete cutoff at least the information is provided as to
whether the minimax value lies above or below the search win-
dow. Thus the null window search gives a relatively efficient
answer to the question of whether the minimax value exceeds a
specified bound.

The null window search is used in a variety of ways: in addition
to heuristic use for presorting possible moves, one might men-
tion the so-called L improvement of the alpha—beta algorithm
and above all the Negascout procedure.

With the L improvement of the alpha-beta algorithm, also
called last move improvement, for every position, the previ-
ously investigated move is evaluated in a null window. The
result for this last investigated move is “only”—sufficient at
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least at the first move level—the statement as to whether this
move is better than the previously investigated move.

The Negascout procedure is based on the hope that the first
investigcated move for a position is already the best; with a
clever heuristic presorting of moves, this hope is by no means
necessarily in vain. After the investigation of the first possible
move, every additional move is checked using a null window to
see whether it might be better than the first move. If the hope
is justified, then thanks to many cutoffs, one has obtained an
efficient proof that the first move is in fact the best. In the
opposite case, the procedure is broken off as soon as a better
move is found, so that the procedure can be started again on
the currently evaluated position, but now with a shorter list of
moves and a new candidate as the hoped-for best move.

e

The search can be speeded up even more if transpositions are taken
into account, that is, if positions that appear in two or more variants are
evaluated only once. In that case, some of the intermediate results, as
in the analysis of a variant for one move, must be stored to be used in
the evaluation of other variants. This assumes the availability of a large
amount of storage, and so such concepts were actualized only in the 1970s.
However, it is not enough merely to store intermediate results. The results
stored must be able to be quickly retrieved. To this end, in 1980 Joe
Condon and UNIX coinventor Ken Thompson used hash tables in their
special-purpose computer Belle, where every position possessed an index
number, for example, between 0 and 232 — 1. It was possible for different
positions to have the same index number, though collisions were rare. Once
a position within a move variant has been thoroughly investigated, the
result, together with data about the position, is stored in the associated
hash index, making it available for the analysis of further variants. To
make the procedure as practical as possible, the formula for the hash index
was created in such a way as to make collisions extremely rare, and a hash
index can be continually updated; that is, on each move the new hash index
is computed from the old one. Common are binary summations without
carry, denoted by XOR for “exclusive or,” which we saw when we were
studying nim addition. For each combination of piece and square a binary
random number is determined at the start of the program, for example,
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2 al: 1101001010011101
2 a: 0011101011101011
2 a3: 1011110100100101
=8 c4: 1011001010011010
4 b7: 0011001110011010

The hash index of a position is now an XOR sum of the associated
individual values:

7

v ﬁ%ﬁﬁﬁy
7,0, 0, 0
v, 0 0, .
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In order to update the hash index after a move, the data for the pieces
and squares involved in the move must be updated. Since the XOR of a
number with itself gives zero, one obtains a new hash index from the old
by adding all the changed data on the pieces. Especially in the case of
positions with many pieces, such an update can be much quicker than a
complete calculation from scratch. For example, if the white king moves
from a3 to a2, then one obtains

old value: 0011110000100101
& a2 0011101011101011
R a3 1011110100100101

XOR
new value: 1011101011101011.

Moreover, hashing collisions are usually ignored in chess programs, so
that positions with the same hash index are given the same evaluation,
even if that is not desirable. The resulting error is simply accepted, since
it only seldom has a serious negative effect. The advantage is that by
not paying attention to collisions, only the important evaluation data, and
not the complete characterization of a position, need to be stored in the
hash table.
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Hash tables can also be used for the evaluation of endgame situations,
which are hopeless using the normal alpha—beta procedure. For the analysis
of special endgame situations, such as king with bishop and knight against
king, it is better to adapt the process and storage management to the
special circumstances (see “Endgame Databases™).

Endgame Databases

Endgames belong to classical chess theory. Beginning with
the easily won endgame of king and rook against king, and
then more complicated endgames such as king with bishop and
knight against king, by the 19" century, even more complex
constellations such as king with two bishops against king and
knight had been analyzed.

It is fun to check these classical endgame analyses with a com-
puter and extend them if possible. To investigate a constellation
of pieces completely, one generates a database that contains the
winning prospects for every possible configuration of the given
tvpe. This corresponds to the technique that we employed in
Chapter 26 in our investigation of Nimbi. In comparison to
Nimbi, however, chess endgames are much more complex, and
not only on account of the large number of possible moves. On
the one hand, in contrast to Nimbi, chess is not impartial. Thus
one must consider whose turn it is in addition to the disposition
of the pieces. In addition, positions in the endgame can repeat
themselves after a number of moves.

For the actual investigation of a special type of endgame, all
possible positions up to symmetry are generated, and using a
position index, storage space is reserved, for each position, for
the as yet unknown result. For all positions it is assumed that
it is white’s move. All positions that are impossible based on
the rules of chess are removed, for example, one in which black
is in check. One asks whether white can force checkmate, and
if so, in how many moves.

The actual analysis can take place by searching all positions
in succession with a search depth of 1,3,5,..., where the po-
sitions on the search horizon are distinguished by whether or
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not white can force checkmate. If at every search depth the re-
sults of the previous search are considered, then effectively only
the minimax values of the two additional (half) moves need be
investigated.

The following method is faster but more complicated: one be-
ging with the “one-move” positions in which white can check-
mate in one move. With a backward-running minimax process,
the “two-move,” “three-move,” and so on positions are con-
structed, where reference is made to the results already ob-
tained. Thus to find all two-move positions in which white can
checkmate her opponent in three (half) moves, starting with
the one-move checkmates, one goes back one double move: first,
every possible black move is reversed, so that every position is
generated that could lead in one move to one of the one-move
positions. Such a precursor position, which has the additional
property that all its possible black moves lead to one-move po-
sitions, forms an intermediate position between the one-move
and two-move positions. A two-move position is then obtained
by backing up, from one of the intermediate positions, one move
that white could have made previously, unless for such a precur-
sor position there is already a faster checkmate, namely, check-
mate in one move.

Regardless of how the actual investigation is carried out, in each
case one ohtains a database that contains information on every
position as to whether white can force mate and how many
moves are necessary to do so. The first computer endgame
analyses were carried out in 1970 by Thomas Stréhlein in con-
nection wih his dissertation at the Munich Technical Univer-
sity.? In the 1980s, Ken Thompson investigated many of the
more complicated endgames. His extensive results were pub-
lished in compressed form on CD-ROM.!? In the following table
we have collected some of the results of particular endgames.
What is tabulated there is the maximal number of double moves
until the game is “decided,” that is, the number of double moves

9Thomas Stréhlein, Untersuchungen iber kombinatorische Spiele, Munich 1970. In
Chapter 9, the endgames KR-K, KQ-K, KR-KB, KR-KN, and KQ-KR are investi-
gated. Using the computer TR4 from AEG-Telefunken with about 114 Kilobyte of
memory, the analysis of the rook endgame KR-K took nine minutes. See also Gunther
Schmidt, Thomas Strohlein, Relationen und Graphen, Berlin 1989, pp. 199-202.

10See also C. Posthoff, G. Reinemann, Computerschach—Schachcomputer, Berlin
1988, pp. 123{f., as well as Dieter Steinwender, Frederic A. Friedel, Schach am PC,
Haar 1995.
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that white needs in particular positions of this type to check-
mate black, promote a pawn, or capture a piece in order to
arrive at a simpler type of endgame.

White Black Maximal Number of
Double Moves to a “Decision”
KQ K 10
KR K 16
KP K 19
KQ KR 31
KR KB 18
KR KN 27
KBB K 19
KBN K 33
KBB KN 66
KRB KR 59
KRN KR 33
KQ KNN 63
KQ KNB 42
KQ KBB 71

Aside from those positions that permit black a quick decision in
his favor, be it checkmate or stalemate, white can always win in
the given positions. This is noteworthy for two reasons. On the
one hand, it is in opposition to classical theory. For example,
in the endgame king and bishop pair against king and knight,
certain positions, the so-called Kling—Horowitz positions, were
considered defensible by black. However, and this is the second
point, white can actually force a win if the 50-move rule is
appropriately modified for such positions.

Using an idea with which endgames without pawns can be an-
alyzed in parallel, Lewis Stiller managed in the early 1990s to
settle even more complex constellations of pieces.!! The object
of his investigations were the various endgames in which four
figures plus the two kings, but no pawns, were in play. His note-
worthy discovery is the pictured KRN-KNN endgame position,
in which white is able only at the 243rd double move to force
the capture of a black knight.

UTewis Stiller, Multilinear algebra and chess endgames, in: R.J. Nowakowski (ed.),
Games of No Chance, Cambridge 1996, pp. 151-192; Lohn der Geduld, Spektrum der
Wass. 4, 1992, pp. 22-23.
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Although we have described here some of the main ideas and techniques
of chess programming, we have not discussed how they can actually be
programmed. To give at least an impression of this, we will sketch how
one might program the main part, namely, the minimax procedure and the
alpha—beta algorithm. We shall not go into other parts of a chess program,
such as quiescence search and hashing, in order to keep the exposition
simple.

Subprograms and Recursion

In order to make large computer programs manageable, it is
advisable to package individual tasks into independent subpro-
grams. Such subprograms use their own local variables and
are accessible by the main program and other programs only
through a well-defined interface of variables, both for input and
output.

All modern programming languages permit recursive subpro-
grams, with which one can often simplify the expression of a
complex algorithm. Thus for example, one can compute the fac-
torial function, say 5!, by the assignment facs = Factorial(5),
which calls the followmg subprogram:

FUNCTION Factorial(n)
IJF n=00Rn-=1 THEN

Factorial = 1

ELSE
Factorial = n * Factorial(n - 1)
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END IF
END FUNCTION

The subprogram works hecause with each call to the function, a
new copy of the variable n is generated, each copy being stored
on a stack, a particular type of memory organization. Follow-
ing ideas developed at the end of the 1950s, the stack manages
all the variables of subprograms that have begun but have not
vet terminated, and without regard to duplication of names
among subprograms or for multiple calls to the same subpro-
gram. That is, all the variables that appear in the subprogram,
including those for input, output, intermediate results, and the
state of the program, are created anew for each call of a sub-
program, and these variables are maintained until the program
terminates. The stack is organized on the “last in, first out”
principle, in analogy to a desk on which new documents to be
acted on are placed on the top of the pile, without regard to
whether there are unprocessed papers below. When a piece of
work is completed, be it a document or a subprogram, then
whatever was being worked on at the time of interruption is
picked up where it was left off and work is continued on it.
This means that in the original call of Factorial(5), the sub-
program is processed until it encounters the line

Factorial = 5 * Factorial(4)

at which point the variable n and the internal variables for
intermediate results and the program state are stored on the
stack. Before the multiplication, the calculation is interrupted,
and the program proceeds with a new call to the Factorial
subprogram, using a new set of variables, consisting of the vari-
able n, this time with the value 4, and the internal variables
for intermediate results, final results, and the process state.
This continues until the value 1 is reached. Only at the end,
when Factorial (1) hasreturned its results via its internal vari-
ables to Factorial(2), are the subprograms Factorial(2),
Factorial(3), Factorial(4), and finally Factorial(5) con-
tinued where they were broken off and brought to an end.

i

We begin by formulating the minimax algorithm according to the prin-

ciples of common programming languages, as was done in the previous
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sidebars. In particular, a program called Minimax will be created that
calculates the minimax value as a function of the search depth n and the
starting position Position of a suitable variable type. This can be done
relatively simply using a recursive procedure (see “Subprograms and Re-
cursion”). We do not show the determination of the most interesting result,
namely, the best move, but it can be easily added for the first search level.

FUNCTION Minimax(n, Position)
IF n = 0 THEN
Minimax = EstimateValue(Position)
ELSEIF Position.OnMove = White THEN
(determine positions P(1), ..., P(s), to which white can
move from Position)
IF s = 0 THEN
Minimax = Win(Position)
ELSE
MaxValue = -infinity
FOR j =1 TO s
MaxValue = max(MaxValue, Minimax(n - 1, P(j)))

NEXT j
Minimax = MaxValue
END IF
ELSE
(determine positions P(1), ..., P(s), to which black can

move from Position)
IF s = 0 THEN
Minimax = Win(Position)
ELSE
MinValue = infinity
FOR j =1 T0 s
MinValue = min(Minvalue, Minimax(n - 1, P(j)))
NEXT j
Minimax = MinValue
END IF
END IF
END FUNCTION

The program can be easily explained. The function subprogram Minimax

is based on the following:

e the function subprogram Win, which returns the game value for white

for the end positions.
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e the function subprogram EstimateValue, that estimates the winning
prospects for white in a certain position based on the value of the
pieces and positional considerations.

e the move generator, which generates the subsequent positions P(1),...,
P(S) from a given position.

e the Minimax subprogram itself, but now with a search depth reduced
by 1 and applied to the subsequent positions.

Depending on the current case, namely,
e upon reaching the search horizon,

e upon reaching an end position,

¢ when white is to move,

e when black is to move,

the minimax value is calculated, generally by maximizing or minimizing
the recursively determined minimax values of the subsequent positions.
For programming the alpha—beta algorithm we use a modified minimax

function. If v(P) is the usual minimax value of a position P, then instead
of that, one calculates a function u(P, e, 3), whose value agrees with that
of the minimax value v(P) within the acceptance interval determined by «
and [, and otherwise, takes on a value on the “right” side of the acceptance
interval:

<a for v(P) < a,

u(P,a,B) =v(P) fora <v(P)<j,
>f for B < v(P).

FUNCTION AlphaBeta(n, Position, Alpha, Beta)
IF n = 0 THEN
AlphaBeta = EstimateValue(Position)
ELSEIF Position.0OnMove = White THEN
(generate Positions P(1),..., P(s), to which white can
move from Position)
IF s = 0 THEN
AlphaBeta = Win(Position)
ELSE
MaxValue = Alpha
FOR j = 1 TO s
CurrentValue = AlphaBeta(n-1, P(j), MaxValue, Beta)
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MaxValue = max(MaxValue, CurrentValue))
IF MaxValue >= Beta THEN EXIT FOR

NEXT j
AlphaBeta = MaxValue
END IF
ELSE
(generate Positions P(1),..., P(s), to which black can

move from Position)
IF s = 0 THEN
AlphaBeta = Win(Position)
ELSE
MinValue = Beta
FOR j =1 TO s
CurrentValue = AlphaBeta(n-1, P(j), Alpha, MinValue)
MinWert = min(MinWert, WertAkt)
IF MinValue <= Alpha THEN EXIT FOR
NEXT j
AlphaBeta = MinValue
END IF
END IF
END FUNCTION

In contrast to the minimax program, here we have the variables alpha
and beta, whose values, beginning with the original input, are adapted to
the results obtained during the optimization process. Thus, for example, a
win that was assured with the move to position P(j) becomes the minimum
requirement for the moves P(j+1), ..., P(s) yet to be investigated. If it
turns out during the optimization process that the current player can attain
a result that is favorable with respect to the acceptance region, the process
will be terminated at once with a cutoff. The beginning of the alpha—
beta procedure is also important: to obtain the desired minimax value, the
acceptance region must be made large enough at the beginning. Namely,
for an arbitrary position P, one has

Minimax(n, P) = AlphaBeta(n, P, -infinity, infinity)

Equally unattractive in both subprograms is that black’s moves and
white’s moves are handled in two almost identical program segments. How-
ever, with a bit of work this drawback can be overcome if the game is always
viewed from the point of view of the player whose turn it is trying to maxi-
mize his own game value. The corresponding variants of the two algorithms
are called negamazx versions.
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In practical chess programming one wants absolutely to avoid the posi-

tion variables P(1), ..., P(s), for whose initialization many bytes have to
be copied. More effective is to change the stored data directly in the vari-
able Position. However, in this case the original data have to be recreated
after a move has been analyzed. That is, the move must be “taken back.”

Chapter Notes

1. In a game tree of depth d and n possible moves per position, there are n

o

end positions to evaluate in a normal minimax search. With the alpha-beta
algorithm, there are significantly fewer, where the actual number depends
on the order in which the moves of a particular position are evaluated. If
the analysis of each position begins with the best move, then only 2n%/2 —1
end positions need be evaluated for even depth d, and n(¢+1/2 4 pld=11/2
for an odd depth. As an order of magnitude, one can take the number
2n%'?_ so that for the same search time, about double the depth can be
achieved.

The number of cutoffs achieved is plausible if one imagines the time it takes
for a typical situation in alpha—beta search, and the as yet unknown result
at this point in time gives some idea of how good the individual moves are:

e white is about to investigate a move that in comparison to the move
already analyzed will turn out to be worse. Then the remaining moves
are investigated by white.

o for black a reply is investigated that will turn out to be a refutation of
white’s first move. The other alternatives to this move can therefore
be ignored.

o for white, a defense against the refutation is sought, but this search
will not meet with success.

e a refutation for black will thus be sought.
And so forth. Since for each player it suffices to find a sufficiently good

refutation, generally only a few moves need to be searched at the second
level, in any case, many fewer than there are altogether.

Further Literature on Chess Programming

[1] David Levy, Monty Newborn, How Computers Play Chess, New York 1991.

[2] Rainer Bartel, Hans-Joachim Kraas, Giinter Schriifer, Das grosse Computer-

schachbuch, Diisseldorf 1985,
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(3] Hans-Peter Ketterling, Frieder Schwenkel, Ossi Weiner, Schach dem Com-
puter, Munich 1980.

[4] Feng-hsiung Hsu, Thomas Anantharaman, Murray Campell, Andreas Nowatzky,
A Grandmaster Chess Machine, Scientific American 263:4, 1990, pp. 18-24,




Can Winning Prospects
Always Be Determined?

Twe mathematicians play the following game: they alternate turns, and
the game lasts exactly five moves. A turn consists in choosing an arbitrary
nonnegative integer and making it known to the opponent. After the five
moves have been taken, and the integers x1,xq, T3, T4, x5 chosen, the first
player wins if and only if

J“f + x% + 2x122 — X325 — 213 — 225 — 3 = 0.
Which player has a winning strateqy available?

That the players are mathematicians is certainly not of importance for the
existence of a winning strategy, but then again, who else would play such a
weird game? Of course, the purpose of the game is not for it to be played,
even by mathematicians. Rather, we shall use it as preparation for the
next chapter, in which we promise the reader to return to “real” games.

The first thing that we notice in looking at the above equation is that
x4 does not appear at all. Furthermore, we can transform the equation
into the following form:

(;3‘,‘1 + $3)2 +1= (:L‘:; + 2)(2’.‘5 + 2)

In this form it becomes apparent how the two players should develop their
strategies. The first player can win precisely when the result of the first two
moves yields an integer (1 + x2)? + 1 that is not a prime. Then and only

286
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then can the first player choose z3 and x5 in such a way that the equation
is satisfied. To be sure of winning, the second player must attempt to
choose x5 in such a way that (x; + z2)% + 1 is prime. Independent of the
opening move 1, this will be possible only if there are infinitely many
prime numbers of the form n? 4 1. Whether that is the case is something
that we are not going to answer here, since it is an unsolved problem in
mathematics.! If there are only finitely many primes of the given form,
then the first player needs only to choose the first number x; large enough
to ensure a win.

In sum, we know that one of the two players has a winning strategy.
However, we don't know which player it is!

This game originated with James Jones, who also constructed an entire
class of similar games of much greater interest.? Again the two players
alternate in choosing numbers, this time over 17 moves. The first player
wins if the expression

(n+az5+1—a4)

* ((SL‘{J + 1177)2 + 3$7 + x5 — 2:1,‘4) + |i((1‘lz — I?)z + (11}‘_14 - 13311)2)

X ((1312 —25)° + (214 — 133'9)2((334 —n)? 4 (2yq — 2y — n)z))

% ((w12 — 324)? + (214 — 29 — 711)°)

2
x ((1‘12 - 3I4 — 1)2 -+ (:1714 - 11?93311)2) — I15 — 1]

ps (('-?314 + @15 + 1571275 — '-?31)2 + (214 + 17 — Ilzi‘a)2)

is equal to 0. The parameter n is not chosen by the players, but belongs
to the rules of the game. That is, there is a different game for each value
n = 0,1,2,.... The question, then, is this: for which games does the
first player have a winning strategy, and for which games does the second
player have one?? We must decide how the winning prospects of the game
associated with the parameter n can be determined.

1See Paulo Ribenboim, The Book of Prime Number Records, New York 1988, p. 322
(6. III. A. Conjecture E). There is a formula for the approximate number of such primes
less than a given value based on experimentation and probability arguments. The for-
mula suggests that there are infinitely many prime numbers of the form n? +1, but there
is no known proof that this is so.

2].P. Jones, Some undecidable determined games, International Journal of Game
Theory 11, 1982, pp. 63-70.

3The existence of winning strategies is assured, even though the assumption of Zer-
melo’s theorem, namely, the finiteness of the number of possible moves, is not satisfied.
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It is not difficult to see that a normal minimax procedure will not work
here. After all, for every move there are infinitely many possibilities, which
gave us difficulties even in the first game that we considered here. For how
long should we search for a good move? Can a search that has not met
with success be broken off because no winning move will be found? Or is
there some other way that the infinitude of possibilities can be evaluated
in a finite number of calculational steps?

It gets even worse, as one may readily imagine: the problem is undecid-
able; that is, one can prove that there is no algorithm that can determine
the winning prospects for every game of this class. Thus it is impossible
to program a computer so that for each value of n, the associated winning
prospects can be calculated. No mathematician, no matter how clever, will
ever find a general solution of the question of which games can be won by
the first player and which by the second.

How can such statements be explained? They seem at first astounding,
even unbelievable. To understand what is going on here, we need to intro-
duce some ideas from the foundations of theoretical computer science and
mathematical logic, subjects that often lead to the limits of human reason-
ing ability, which perhaps explains why such a comprehensive and difficult
book like Gédel, Escher, Bach,* which deals with such topics, became a
bestseller in the early 1980s.

We begin our discussion of the foundations of theoretical computer sci-
ence and mathematical logic with the notion of computability: even before
the existence of universal, that is, freely programmable, computers, there
were a number of approaches in the 1930s to defining a formal notion
of computability. Of course, such a definition should agree with exist-
ing notions and experience related to computation. Thus, for example,
arithmetic operations and calculational methods should be included. A
most suggestive definition is due to Alan Turing, based on the model of a
seemingly primitive, yet universally programmable, computer, later called
a Turing machine.® Other approaches were purely arithmetic, though they
turned out to be, together with other approaches, equivalent to Turing's
definition. In 1936, Alonzo Church (1903-1995) formulated a theory that
later became known as Church’s thesis, according to which everything that
we think of intuitively as computable can be computed with a Turing
machine. For our purposes, let us agree on the following definition of
computability:

4Doulgas R. Hofstadter, Gédel, Escher, Bach, New York 1979.

5Alan M. Turing, On computable numbers, with an application to the Entscheidung-
sproblem, Proceedings of the London Mathematical Society (2) 42, 1936, pp. 230-265,
(2) 43, 1937, pp. 544-546.
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Everything that can be programmed on a normal, that is, de-
terministically programmable, computer will be said to be com-
putable. We limit ourselves to programs that for a given input
always produce the identical output. We deviate from practi-
cal reality only in permitting an unlimited amount of computer
memory.

Although the idea of computability is generally associated with num-
bers, our definition does not limit us in this regard. For example, the
object of our computation can be text or game configurations. For ease of
programming we shall again, as we did in the previous chapter, program
our fictive model computer using a high-level modern programming lan-
guage.® That is, with the aid of system programs such as compilers and
interpreters, the high-level commands of a program can be translated level
by level into machine commands and then processed; this translation is
nothing more than a special series of calculations in the form of transfor-
mation of text. Thus a compiler is a form of universal program that for a
given input, namely, a program in a particular programming language, can
carry out all passible computations.

Let us remain a bit on the topic of compilers. During the translation to
machine code the compiler may detect syntactic errors, that is, violations
in the program against the rules of the programming language. These must
be corrected before a successful compilation can take place. Yet, as every
programmer has experienced, a program free of syntactic errors that has
been successfully compiled will not necessarily run free of errors. Logical
errors in the program can cause it to compute something other than what
the programmer had in mind. And things can get even worse: the program
might end up in an infinite loop and never terminate.

It would therefore be highly practical if a compiler could be improved
in such a way that it would automatically detect infinite loops. This does
not seem a difficult assighment, as the following example illustrates:

N=1
WHILE N > O
N=N+1
WEND

But what about the following program, whose execution depends on an
integer N that is to be input before the program runs?

S A reduction of programming languages similar to Pascal to a universal minimal
code corresponding to the programming of Turing machines is given in Jirgen Albert,
Thomas Ottmann, Automaten, Sprachen und Maschinen fiir Anwender, Zurich 1983,
pp. 274,
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INPUT N
WHILE N <> 1

IF (N MOD 2) = O THEN N = N/2 ELSE N = 3 * N + 1
WEND

For which values of N does the program halt, and for which values does
in land in an infinite loop? Beyond this specific question, it would of much
greater interest to consider the general question, called the halting problem.
For a given program and its input can it be determined whether it will halt,
and if so, how; that is, can one create a computer program that will check
whether the program will halt in a finite amount of time and produce a
unique output?

Such a program would be of great interest, and not only to program-
mers. Even mathematical problems could thereby be solved. For example,
if we wished to check whether the equation

"4yt =z

has a solution for positive integers n,z,y, z with n > 3, then a program
could be developed along the following lines: with the help of subprograms
for adding and multiplying arbitrarily large numbers, the program would
systematically test all combinations of possible values (n, z,y, z) and check
whether they satisfy the equation. The search will continue until the pro-
gram finds a solution and then terminate. If there is no solution, then of
course the program will never halt. If one could determine independently
whether this search program will ever halt, that is, whether it will ever find
a solution, then the solubility of the equation would also be determined. In
the same way, the question posed earlier whether there are infinitely many
prime numbers of the form n? + 1 could also be answered analogously.
Essentially, one would test the halting behavior of a search program that
beginning with an input N, tests all larger numbers in succession as to
whether they are of the form n? + 1 and halts on the first success. That
value is then used as the new input N, and the process is continued until
an input is found that leads to an input that can be shown to result in
an infinite loop. Then there are infinitely many primes of the form n? + 1
precisely if this program never halts.

The high quality of the two example problems leads to serious doubts
about the solvability of the halting problem; namely, as we have already
mentioned, the answer to the second problem is unknown, while the first
deals with the famous Fermat conjecture, which required more than 350
vears since its formulation by Pierre de Fermat before a solution was found
(see Note 1 at the end of the chapter). In fact, the halting problem is
undecidable; that is, it is a task that has no algorithmic solution. In other
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words, there is no possible computer program that would be a solution to
the halting problem. This impossibility can be proved indirectly. To this
end, one assumes that such a test program existed, extends the program
in a suitable way, and thereby obtains a contradiction, namely, that the
extended program is able to test itself. See “The Halting Problem.”

o -
(%

The Halting Problem

We make the following assumptions in our investigation of the
finite or infinite running time of computer programs:

e the programs run on an imaginary computer that possesses
unlimited storage capacity.

e the programs are formulated in a particular programming
language, such as Pascal, C, or Basic, that is strong enough
so that a compiler for the langnage itself can be written in
that language.

e the program has input in the form of text, where numer-
ical input is suitably transformed and multiple inputs are
separated by a unique separator, such as $, that is used
for nothing else.

The statement of the halting problem is this: does there exist
a program, we shall name it STOPTEST, that given as input
a program together with its text input determines whether the
given program with the given input will ever halt? That is,
the program STOPTEST itself should always halt after a fi-
nite amount of time and then output either “INFINITE” or
“HALTS" according to whether the input program run on its
text input runs forever or halts in a finite amount of time. Fi-
nally, in the special case in which the input program is not syn-
tactically correct, the program STOPTEST will output
“HALTS.” This last test can be made by a normal compiler.

The proof that no such program STOPTEST with the required
characterstics can exist is an indirect one. That is, we assume
that we indeed have such a program and attempt to derive
a logical contradiction from that assumption. To this end, we
extend STOPTEST to a program that we will call DIAGONAL,
which consists of the following three program steps:
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1. first, the input text is duplicated, and the two copies are
separated by the special separator symbol used in

STOPTEST.

2. then STOPTEST is launched on the duplicated input; that
is, the original input to the DIAGONAL program is used
twice, once as the program to be tested, and once as the
input to that selfsame program.

3. the further course of the DIAGONAL program depends
on the result produced by the subprogram STOPTEST:

e if the result is “HALTS,” then DIAGONAL will run
in an infinite loop.

e if the result is “INFINITE.” then DIAGONAL stops

at once.

The properties of our program DIAGONAL can be immediately
derived from those of STOPTEST. If the input is not a syntacti-
cally correct program, then DIAGONAL runs without halting.
Of greater interest are of course the other cases, in which the
input corresponds to a syntactically correct program:

e if the input program eventually halts upon being launched
with itself as input, then DTAGONAL runs forever with
this program as input.

e if the input program does not halt when run with itself as

input, then with this input, DIAGONAL halts.

And now for the punch line: what happens when the program
DIAGONAL receives its own program text as input? Does it
eventually halt, or does it run forever? Each of the two possibil-
ities leads to a contradiction: given itself as input, DIAGONAL
halts if it doesn't halt, and conversely. This result is similar to
the fact that the proposition “This sentence is false” contains
a logical contradiction. The cause is a negating self-reference,
which was known in antiquity by the Cretan scholar Epimenides
as the “All Cretans are liars” paradox. In the case of the pro-
gram DIAGONAL, the only way of resolving the contradiction
is by abandoning the assumption that the program STOPTEST
can be created in the first place.
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It is not only in the halting problem that contradictory self-references
play a role in mathematical thought. The first to use such diagonalization
procedures was Georg Cantor (1845-1918), the founder of set theory. Using
such a technique, he proved in 1874 that the set of real numbers, unlike
the set of rational numbers, cannot be presented in the form of an infinite
list. (Said another way, there is a one-to-one correspondence between the
rational numbers and the natural numbers, but not between those two sets
and the real numbers.) This was the first proof that not all infinite sets
have the same “size.”

Less pleasing to Cantor was another application of the diagonalization
procedure by Bertrand Russell (1872-1970). In 1906 he proved that Can-
tor's set theory contains a logical contradiction by considering the set of
all sets that contain themselves as an element and asked whether that set
contained itself as an element. In 1931, Kurt Godel (1906-1978) used a
much more complex diagonalization argument to prove his famous incom-
pleteness theorem. According to this theorem, any mathematical theory
such as arithmetic or classical geometry can never be decided on the basis
of a finite number of axioms. That is, no matter what set of axioms you
choose for your theory, and regardless of whether they are free of contra-
dictions, there will always be propositions in your theory that are true but
are nonetheless unprovable. Thus one can formulate propositions such that
neither the proposition nor its negation can be proven. Yet one of the two
assertions must be true, and thus there always exist true propositions that
cannot be proven.

Gadel’s incompleteness theorm marked the end of an era in mathemat-
ics that began at the end of the 19*® century, which was marked by the
goal of putting the foundations of mathematics on a secure footing. It is
clear that a secure foundation for mathematics was desirable. After all,
unlike the natural sciences, mathematics is based not on experiment and
observation of the natural environment, but on sets of axioms. Recall the
difficulties, discussed in Chapter 8, of creating a mathematical foundation
for probability theory.

Therefore, mathematicians sought a system of unprovable axioms that
would serve for the logical derivation of all known mathematical laws while
never leading to any logical contradictions. And mathematical logic must
be included as well: what logical rules of derivation are permitted for
proving facts from the axioms and additional facts from the facts already
proved?

The first axiomatization of classical geometry occurred in antiquity,

namely, in the third century B.C.E., with Euclid’s Elements. In particular,
Euclid formulated the fundamental relationships between objects such as
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“point” and “line.” For example, “For every pair of distinct points P and
(@ there exists precisely one line £ on which both P and @ lie.”

Euclid’s attempts to clarify just what the objects of geometry are, along
the lines of, “A point is that which has no part,” are essentially worthless
for modern mathematics, which insists that a set of axioms describe the
properties of the relations between objects, such as between a line and a
point lying on that line, so precisely that the consequences of such relation-
ships remain clear even if any attempt at visualization, even one borrowed
from everyday experience, is done without. We can state this in the stark
words of David Hilbert: “One must be able at any moment to replace the
words ‘points, lines, planes’ with ‘tables, chairs, beer mugs.’”

Euclid’s axiom about parallel lines aroused controversy even in ancient
times. One form of the axiom is this: for every line £ and point P that does
not lie on £, there is precisely one line h in the plane determined by P and
¢ on which P lies and that has no points in common with £. It was long
questioned whether the parallel axiom could be derived from Euclid’s other
axioms. After all attempts at a proof failed, two mathematicians, Janos
Bolyai (1802-1860) and Nikolai Lobachevski (1792-1856), succeeded inde-
pendently around 1930 in showing that such a proof was impossible. The
reason is both simple and ingenious. One gives an example of a geometric
system that satisfies all of Euclid’s axioms except the parallel axiom and
such that the parallel axiom is violated. That is, one defines notions such
as point, line, and what it means for a point to lie on a line in a special way;
for example, one could consider a line to be a great circle on a sphere and
define a point in the usual way. As simple as this idea sounds, it required a
courageous break with the interpretation of Euclid’s axioms as something
God-given. In other words, while axioms may attempt to describe the
objects of our existence, and while the results derived from those axioms
might thus be of practical use, it is also possible to create axioms that
partake of an entirely different interpretation, one that may reflect little or
nothing of the world around us, for example, a non-Euclidean geometry,
as such a system is called that satisfies all the Euclidean axioms except for
the parallel axiom (See Note 2 at the end of the chapter).

To prove his theorem, Gédel constructed an arithmetic proposition
whose interpretation amounted to a declaration of its own unprovability.
If the proposition were false, it would have to be provable. Therefore, the
proposition must be true, but then, if it were true, it would have to be
unprovable. Even this hint at Gédel's proof suggests the great subtlety
required in his argument in order not to entangle himself in a web of con-
tradictions. We can approach Gdédel's theorem a bit less abstractly by
looking at the theorem’s close connection with the halting problem. (See
“Godel’s Incompleteness Theorem.”)
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Godel’s Incompleteness Theorem

There are two facts that underlie the close connection between
Godel’s incompleteness theorem and the halting problem:

e if an arithmetic proposition is provable from the axioms of

the system, then a proof can be found—at least theoreti-
cally—by a computer program.
To this end, all proofs that can be formulated using the
finitely many axioms and finitely many logical derivation
rules are listed by a computer program. If a proof is found,
then the program stops. This makes possible a process by
which all arithmetic propositions including the axioms can
be translated into a purely formal language, such as could
be created using the symbols

+! Xy = (! )e K] A! v! =, []- Se \V‘! 35 Ly Yy onn

The permitted logical proof steps involve rules by which
strings of these symbols can be transformed. It can then
always be determined in a strictly formal and unique man-
ner whether a proof presented in the form of a character
string is correct, that is, whether it is the result of permit-
ted textual transformations of the axioms or other proposi-
tions whose proofs have already been established. It is not
necessary, nor even desirable, to supply a semantic inter-
pretation to these strings. However, even “obviously true”
propositions such as 0 = 0 and 5550 = 5550, which
we might interpret as 3 = 3, require a proof. And that
is not always a simple matter, even for “theorems” like
S0+ 5550 = §550, which stands for 1+ 3 = 4.

e the proposition that a given pair of program and input will
or will not eventually halt is of a purely arithmetic nature:
in a computer program, the stepwise changing of values
of the variables, including those of the internal variables
that reflect the program state, can be described by arith-
metic formulas. Thus for every concrete halting problem
there corresponds a string of arithmetic symbols, where
the necessary transformation of the program and input
into a string can be calculated.

295
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If every arithmetic proposition could be decided on the basis
of the axioms, that is, if one could always prove or disprove
the proposition, then the halting problem would always be de-
cidable. Therefore, there must be true arithmetic propositions
that cannot be derived from the axioms. Gddel gave a concrete
example (see Note 3 at the end of the chapter).

Of course, one could consider enlarging the axiomatic system.
But even then, there would remain undecidable propositions in
the system. Moreover, every extension of the axioms contains
within it the danger of a logical incompatibility among the ax-
ioms. That no such contradiction exists among the axioms of
arithmetic was shown by Godel in 1931 to be undecidable.”

P i

The propositions that were constructed for Gédel’s incompleteness the-
orem are quite artificial, and thus do not seem particularly relevant to the
parts of mathematics that deal with the real world. But “real” mathe-
matical problems are not exempt from the possibility of being algorithmi-
cally undecidable. A famous example is Hilbert’s tenth problem, the tenth
problem in the list of the 23 most significant open problems in mathemat-
ics presented by David Hilbert at the Second International Congress of
Mathematicians in Paris in 1900.

Hilbert's tenth problem deals with Diophantine equations, that is, equa-
tions based on polynomials with integer coefficients, such as the Fermat
equation

2 gtt = 1
or even
y* =z -3z +5,

for which one seeks integer solutions. The name “Diophantine” goes back to
the Greek mathematician Diophantus, who lived in Alexandria in the third
century C.E. and investigated special types of such equations. Hilbert asked
for a procedure by which “using a finite number of operations it can be de-
cided whether the equation is solvable in rational integers.” In a more mod-
ern formulation, Hilbert’s problem asks, Is it decidable whether a Diophan-
tine equation is solvable? That is, can a computer be programmed so that
for every text input such as xx*11+y**x11=z**11 or y**2*z=x**3-3*x+5
it can be determined after a finite amount of processing time whther the

7Since such a contradiction allows every propostion to be proved, the lack of contra-
diction is equivalent to the statement that there can be no proof of the statement (0 = 1.
This is related to Hilbert’s second problem from the year 1900.
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equation has a solution in integers? Such a program could be written for
solvable equations, since one could, at least theoretically, try all possible
solutions one after the other. If we are guaranteed a solution, then this
process must eventually terminate. However, it can be much more difficult
to prove a Diophantine equation unsolvable. Of course, in special cases,
such as the equation z? + y? = 3, one needs to investigate only a limited
number of cases either on the basis of size (we must have |z| < 1 and
ly| < 1) or divisibility (the sum of two squares always has remainder 0 or 1
when divided by 4, and so cannot equal 3). However, a general procedure
that would work for all Diophantine equations cannot be found in this way.

A conclusive solution to Hilbert's tenth problem was found only in 1970,
by the 22-year-old Russian mathematician Yuri Matiasevich. Building on
earlier partial results, he proved that the solution of Diophantine equations
is undecidable. In other words, as with the halting problem, there can be
no computational procedure, and therefore no computer program, that will
establish for every Diophantine equation in finite time whether it is solvable
(see Note 4 at the end of the chapter).

Algorithmically undecidable problems can also be used to construct
games with indeterminable winning prospects. The first to do so was M. O.
Rabin in 1957 with a not very concrete example.® In 1982, James Jones
presented the examples that we saw earlier of a series of games each of
which is defined on the basis of a Diophantine equation with 17 variables.
Although one of the two players possesses a winning strategy in each game,
there is no general procedure for determining which of the players is in a
winning position.

But of course, even for games whose winning prospects can be theoret-
ically calculated, in practice such a calculation can be very difficult. How
difficult this can he will be examined in the next chapter using the “real”
games go-moku and Hex.

Chapter Notes

1. The history of the Fermat conjecture has been repeated in a variety of
venues and at a variety of levels. Here are some references: Harold M. Ed-
wards, Das Fermatsche Theorem, Spektrum der Wisschenschaft 12, 1978,
pp. 38-45; Ferne Zukunft, Der Spiegel 28, 1983, p. 146; Siisses Gift, Der
Spiegel 12, 1988, pp. 272-275; Griff nach dem Gral, Der Spiegel 26, 1993

8M. O. Rabin, Effective computability of winning strategies, in: H. W. Kuhn, A. W.
Tucker (eds.), Contributions to the Theory of Games III, Annals of Mathematics Studies
39, 1957, pp. 147-157.
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pp. 203 £.; Christoph Péppe, Der Beweis der Fermatschen Vermutung, Spek-
trum der Wissenschaft 8, 1993, pp. 14-16; Thiagar Devendran, Der Wider-
spenstigen Zihmung, Bild der Wissenschaft 4, 1994, pp. 42-44; M. Ram
Murty, Reflections on Fermat’'s Last Theorem, Elemente der Mathematik
50, 1995, pp. 3-11; Jirg Kramer, Uber die Fermat-Vermutung, Elemente
der Mathematik 50, 1995, pp. 12-25; René Schoof, Fermat’s Last Theorem,
Jahrbuch Uberblicke Mathematik, 1995, pp. 193-211; Christoph Péppe,
Die Fermatsche Vermutung ist bewiesen—mnun auch offiziell, Spektrum der
Wissenschaft 8, 1997, pp. 113-116; Simon Singh, Kenneth A. Ribet, Die
Losung des Fermatschen Ritsels, Spektrum der Wisschenschaft 1998/1,
pp. 96-103; Simon Singh, Fermat’s Last Theorem, New York 1997.

In the sense of object-oriented programming, one can imagine mathemat-
ical objects not only as belonging to an axiomatic system, but also as
instances of particular classes whose structure is hidden by strong encap-
sulation. That is, one cannot tell, for example, whether instances of two
classes point and line refer to points and lines on a plane or points and
great circles on a sphere. All that can be checked, using appropriate meth-
ods, are the relations between the given instances; for example, it can
always be determined for a point and a line whether the point lies on
the line. Other methods can be used to establish equality between two
instances or to generate additional instances.

Setting out from the ideas on the halting problem that we have been exam-
ining, let us consider a program that given a program A as input, searches,
possibly without ever halting, for a proof of the proposition “Program A
does not halt on input A” and halts if it finds such a proof and exhibits the
proof as its output. Such a program is actually realizable as a combination
of two programs:

e the first part of the program translates a concrete halting problem,
including program and input, into a string of arithmetic symbols.

e the second part searches for a proof of the string that was thus gen-
erated.

Once our program, which we will call program D, has been constructed, we
run it with program D itself as input. What happens? Does the program
halt on this input? We would like to investigate the halting behavior on two
levels, namely, on the level of symbolic arithmetic and on that of semantic
interpretation. Within the semantic interpretation—and within it only—
the propositions involve the properties “true” and “false” in just such a
way as the parallel axiom does not represent a true or false proposition in
and of itself, but only when interpreted within the context of a particular
geometry. In connecting the two levels, we begin with the correctness of
the system comprising the axioms and rules of deduction; that is, every
formally decidable (symbolic) proposition in the system should be able to
be interpreted as a proposition about numbers:
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e first, it turns out that the proposition “Program D does not halt on
input D" cannot be decided at the level of symbolic arithmetic; if
the proposition were decidable, then the proof could be found with
the proof-search program D. The necessary input is program D itself.
Since program D halts as soon as the proof has been found, the state-
ment “Program D does not halt on input D” is false, and therefore
cannot be proved.

¢ on the other hand, the proposition “Program D does not halt on input
D” is true: if it were false, the program D would have to halt given
itself as input and thus return a proof of the proposition “Program
D does not halt given itself as input.” Therefore, in contradiction to
the hypothesis that it is false, the proposition must be true.

Therefore, “Program D does not halt on input D” is an undecidable yvet
true proposition.

It remains to note that the argument just presented is not a proof in the
strict sense. It cannot be, since the truth of a proposition is not an object
of formal proofs carried out on a symbolic level. However, that changes
nothing in the legitimacy of accepting the conclusions of the argument and
thus accepting the proposition as true, just as one does for axioms.

4. In general, every set of natural numbers that can be listed by a com-
puter program, such as the even integers, prime numbers, or numerical
encodings of programs that halt, can be characterized as a Diophantine
equation. In particular, for each such set S there exists a Diophantine
equation (Qg(y,®1,...,x;) = 0 such that a natural number n is in S if
and only if the equation Qs(n,z1,...,z;) = 0 is solvable in natural num-
bers. If one chooses for the set S an undecidable set such as can be derived
from the halting problem, then the solvability of the associated sequence of
Diophantine equations Qs(1,z1,...,2x) = 0, Qs(2,z1,...,2) =0, . ..is
undecidable. That is, there can be no computer program that recognizes
the decidability or undecidability of every equation in finite time.

Since solvable and provably unsolvable equations are always recognizable
in finite time, the sequence must contain unsolvable equations whose un-
solvability is unprovable within the axiomatic theory of arithmetic. Such a
Diophantine equation can be explicitly given. It is so constructed that each
of its solutions would correspond to the encoding of a proof of its unsolv-
ability. Thus the equation is unsolvable, but this fact cannot be derived
from the axioms.

A more precise overview of Hilbert's tenth problem can be found in Die
Hilbertschen Probleme, Ostwalds Klassiker der exakten Wissenschaften
252, 1976, pp. 53, 177-195; Martin Davis, Reuben Hersh: Hilbert's 10th
problem, Secientific American 229:5 1973, pp. 84-91; Keith Devlin, Mathe-
matics: The New Golden Age, London 1988; Martin Davis, Hilbert's tenth
problem is unsolvable, American Mathematical Monthly 80, 1973, pp. 233~
269 (contains a complete proof).
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1991. A multifaceted overview is offered.
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Games and Complexity: When

Calculations Take Too Long

Does there ezist for the game Hex, as there does for many nim variants, a

“formula™ that permits a rapid calculation of winning prospects?

The border-to-border game Hex was introduced in Chapter 19. Its config-
urations are characterized by two subsets of squares, one containing those
with white stones, the other those with black. The totality of all configu-
rations is thus structured relatively simply, and it seems highly plausible
that one should be able to find, as in nim, criteria for winning configura-
tions. In the case of Bridge-it, a game similar to Hex, which we also met
in Chapter 19, this can in fact be done, as was shown by Alfred Lehman

in 1964 (see “Bridge-It and Shannon’s Switching Game”).
e S

Bridge-It and Shannon’s Switching Game

In order to determine the winning prospects for a Bridge-it con-
figuration simply, Lehman generalized the game! so that the
object of this new game, dubbed Shannon’s switching game, is

1 Alfred Lehman, A solution of the Shannon switching game, Journal of the Society

for Industrial and Applied Mathematics (STAM Journal) 12, 1964, pp. 687-735.
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a graph. Such a graph consists of a set of vertices and a set
of edges, where in this case, an edge is not necessarily associ-
ated with two distinet vertices. One can imagine the vertices
as points, which are partially, possibly multiply, connected by
undirected paths, namely, the edges. It is possible for an edge
to connect a vertex with itself. In the graphs used by Lehman
for his game, there are two special vertices, identified by + and
— in the 5 x 5 Bridge-it graph depicted below:

Now players black and white take turns. A move consists in se-
lecting an edge that has not been selected in a previous move.
White plays by “erasing” the edge she has chosen, that is, re-
moving it from the set of edges. Black colors his edge black,
thus making it untouchable by white. The position arising from
a black move can be represented graphically by uniting the two
vertices in the edge selected into a single vertex. The follow-
ing figure shows a Bridge-it configuration after moves by white
and black; the right-hand figure shows the vertices of the edge
selected by black (the heavy line in the left figure) joined into
a single vertex.
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Black wins if he succeeds in linking the special vertices + and
— with the edges that he has selected. Graphically, this means
that the two vertices merge to a single vertex. Otherwise, white
wins.

Since going first can never be disadvantageous, there are three
distinct classes of configurations:

e white to move second possesses a winning strategy.
e black to move second possesses a winning strategy.

e the player to move, whether black or white, possesses a
winning strategy.

The criterion found by Lehman is based on the special kind of
graph called a free. A tree is a graph in which every pair of ver-
tices is linked by precisely one path, perhaps consisting of sev-
eral edges. Equivalently, a tree is an acyclic connected graph;
that is, every two vertices are connected by some path (con-
nected), and no vertex is connected to itself by a path (acyclic).
According to Lehman, black moving second possesses a winning
strategy precisely when two trees can be formed from the edges
of the graph, with both trees containing the same vertices, in-
cluding + and —, but with no edges in common. For example,
if black moves in the configuration depicted above directly be-
low his first move, then he can now force a win as the player to
move second. The following figure shows the resulting configu-
ration and two trees that satisfy Lehman’s criterion for the set
of remaining nodes.

_

If, as in the depicted example, Lehman’s criterion is satisfied,
then black can refute every one of white’s moves: if white moves
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so that neither of the two trees is broken into two parts, then
black can move as he pleases. If white erases an internal edge
from one of the two trees, then black must select an edge from
the other tree in such a way that the divided tree is made
whole.?

In comparison to extensive analyses of long sequences of moves,
Lehman’s criterion is significantly simpler to apply. In particu-
lar, one can immediately confirm whether two given trees satisfy
the required conditions. Moreover, there exist algorithms that
complete the search for such trees relatively quickly.? Lehman’s
criterion can also be modified to analyze the other two classes
of configurations (see Note 1 at the end of the chapter).

i

At the end of his investigations into Bridge-it and related games, Lehman
discussed the game of Hex, to which he was unable to generalize his tech-
nique. That Lehman’s inability to do so was not due to a mere oversight
was demonstrated in 1979 by Stefan Reisch, of the University of Bielefeld,
in his noteworthy bachelor’s thesis Die Kompleritit der Brettspiele Gobang
und Hezr.* Reisch proved that every general procedure for determining the
winning prospects of Hex configurations on large playing boards exceeds
all currently practicable computational capacity. The argument depends
on a conjecture that has not been proved, but is generally accepted as most
likely true.

How are such propositions possible, and what exactly has Reisch proved?
As in the previous chapter, here, too, we must make a detour into theoreti-
cal computer science, this time into the area of complexity theory. Whereas
in the last chapter we were investigating the limitations on what is theo-
retically computable, now we will focus on what is computable in practice,
that is, on the minimum amount of computation necessary to solve a given
problem.

2The converse part of Lehman’s proof, showing that every winning strategy for black
to move second implies the existence of two trees with the given properties, is much
more complex.

3Harold M. Gabow, Herbert H. Westermann, Forests, frames and games: algorithms
for matroid sums and applications, Algorithmica T, 1992, pp. 465-497.

4These results were eventually published: Stefan Reisch, Go-bang ist PSPACE-
vollstandig, Acta Informatica 13, 1980, pp. 59-66; Stefan Reisch, Hex ist PSPACE-
vollstandig, Acta Informatica 15, 1981, pp. 167-191. The game gobang is better known
under the name go-moku. The name gobang is used for the variant in which stones can
be captured.
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We begin with some simple examples. If two integers in their deci-
mal representation are to be added or multiplied, there are well-known
procedures—algorithms—for carrying out these operations. Clearly, addi-
tion is simpler than multiplication, since for the sum of two n-digit numbers
there are n pairs of digits to add, while in the usual multiplication algorithm
of two n-digit integers there are n? multiplications of pairs of digits, which
results in n integers that themselves must be added. With very large num-
bers with their correspondingly long representation as sequences of digits,
the complexity of addition grows more slowly than that of multiplication.
As a function of the length of the input, that is, the total length of the two
decimal representations, the complexity of addition grows in proportion to
the length of input, while that of usual multiplication grows quadratically.
Such tendencies of the computational complexity, and thereby the com-
putational time for a programmed algorithm, are a good measure of the
complexity of an algorithm. In particular, such asymptotic results are in-
dependent of the encoding of the input. Thus the growth rates for a given
algorithm are the same for other numerical representations, such as the
binary system, or two-byte and four-byte encodings used by the computer
for its internal operations.

The approach of describing the computational complexity, as the as-
ymptotic cost for ever longer inputs is called, is useful in many situations.
In particular, the efficiency of an algorithm can be compared with the
efficiency of other algorithms. Thus, for example, the usual method of
multiplication is anything but eflicient on large inputs of hundreds or more
decimal digits. Its complexity of O (nz)T which indicates a quadratically
growing upper bound for an input of n characters, can be improved using
a simple idea to O (nl'ﬁ%) (see Note 2 at the end of the chapter).

In practice, it often suffices to use an algorithm that is fast on average,
since it then operates efficiently in most, but not necessarily in all, cases.
However, great demands can be placed on an algorithm when results are
required in real time, such as in encrypted data transfer, controlling a
manufacturing process, or analyzing a game configuration under tourna-
ment conditions. In such cases it is required that the time required to solve
a problem be guaranteed in advance. In regard to such absolute require-
ments one generally applies, as in the minimax procedure, the principle
of the worst case; that is, the measure of the time complexity is always
the worst possible result for input of a particular length. The classifica-
tion is done using a coarse measure: algorithms whose computing time
can be bounded by a polynomial, that is, O (n), O (n2), O(na), ..., are
considered efficient; that is, they are considered amenable to practical cal-
culation, though a bound of O (n'??) would seem to be stretching the
point. In contrast, worst-case computing times that cannot be polynomi-
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ally bounded, such as growth of order 2", rapidly approach astronomical
orders of magnitude, and are impractical for large inputs (see Note 3 at
the end of the chapter).

This asymptotic growth of the computational demands required by an
algorithm makes it possible as well to predict the future rate of techno-
logical progress. Thus in recent years the speed of computers has doubled
every one to two years. The utility of an algorithm of type Q(n) therefore
is increased to inputs of double the previous size every year or two, while an
algorithm with quadratic complexity can handle inputs of length increased
by only 41%, namely, in the ratio v/2 : 1. On the other hand, for algorithms
with exponential growth, the increase is only by a fixed number of digits.
Instead of individual processes, one can also investigate particular prob-
lems. Their computational complexity can be characterized by identifying
the algorithm that gnarantees the most rapid solution for large inputs; this
is no easy matter in practice, since of course one must include algorithms
that may not yet have been discovered. This difficulty can be overcome
in part by finding some measuring rod for the difficulty of solving a prob-
lem. Thus, for example, we can compare the complexity of games like nim,
Bridge-it, and Hex among themselves: what is the minimal computational
requirement in such a game in comparison to the input length, that is, the
length of an encoded configuration, that guarantees a determination of the
winning prospects of an arbitrary configuration?

e This is simple in the case of standard nim. With respect to the nu-
merical encoding of a configuration, the complexity is at most O(n).
The same holds for nim variants whose Grundy values are periodic or
grow periodically. In these cases the Grundy values can be calculated
with linear computational cost. That holds as well for the subsequent
nim addition.

e The case of Bridge-it is somewhat more complex. Thanks to Lehman’s
criterion and the relevant algorithms for graphs, the winning prospects
of Bridge-it configurations can be calculated with a computational
cost that grows less than quadratically. Thus even relatively large
game boards do not cause a significant problem.

e For Hex, on the other hand, a simple criterion for winning has re-
mained elusive. If one accepts long computation times, one can, of
course, carry out a complete minimax analysis. Then every variant
is determined by the order in which the squares of the player hoard
are occupied alternately with black and white stones. However, the
computational cost of calculating all these variants is immense. In
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comparison to input length, it grows for large boards like the factorial
function, that is, exponentially.

Nonetheless, this analysis will not fail for lack of storage space, whose
requirement remains modest, so long as the moves are investigated
depth first. Then for each point in time in the analysis there is only
one move to be stored per move level. Even if all the moves aris-
ing from a given move are investigated, the next move is generated
on the level in question. With this depth-oriented search (which is
hardly ever used in the analysis of chess positions in practical chess
programs, say to sort the moves according to cutoffs, due to run-
time considerations) the storage requirements can be polynomially
bounded.

Complexity Theory: P-NP-PSPACE-EXPTIME

Each of the abbreviations displayed in the title of this box
stands for a class of decision problems. The restriction to such
problems prevents the complexity reflecting merely an amount
of routine work, rather than an actual difficulty. For example,
to output the number of 1s equal to the value of an input dec-
imal number requires work proportional to the length of the
output, which is of exponential size in relation to the input,
even though the task is quite simple.

However, the limitation of the field of application to decision
problems is not so restrictive as one may at first imagine. In
particular, every optimization task corresponds to a class of de-
cisions for which one asks whether a particular specified upper
or lower bound is achievable.

The four classes of decision problems are hounded as follows:

e the class P contains all decisions that can be computed in
polynomially bounded time. With respect to the calcu-
lation of winning prospects, nim and Bridge-it belong to
this class.

e the class NP comprises those decision problems for which
there is an efficient procedure by which every yes decision
can always be confirmed with the help of suitable supple-
mentary information. Thus the assertion that a number is
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composite can be confirmed quickly if one is given one of
its factors and then carries out a single long division (see
Note 4 at the end of the chapter).

Many combinatorial problems for which an efficient solu-
tion procedure is unknown helong to the class NP. The
best known of these is the traveling salesman problem,
which seeks the shortest route for a traveler who has to
visit a specified number of cities. In the associated de-
cision problem one asks whether a route shorter than a
specified maximum can be found. Positive decisions can
be found simply by confirming that a given route satisfies
the condition. To be sure, without any additional informa-
tion one can examine, in the case of n cities, all n! routes.
However, for a large number of cities the task is enormous,
and certainly not polynomial.

e the class PSPACE consists of all decision problems that
can be solved in unrestricted time with a memory require-
ment that grows at most polynomially in the size of the
input. To this set belong questions about the winning
prospects in games such as Hex that end after a fixed num-
ber of moves. To achieve polynomial space, the minimax
search is conducted depth first, so that for each move level
only a single configuration needs to be stored.

e the class EXPTIME contains all decision problems that
can be solved in exponential time.

These four classes are related as sets according to the following
hierarchy:

P C NP C PSPACE C EXPTIME.

The second inclusion follows from the fact that one can check all
inputs that might serve as supplementary information one after
the other. Since furthermore, only a limited storage area can
be read and written in polynomially restricted time, the class
NP must be a subset of the class PSPACE. The third inclusion
is based on the fact that the number of internal storage states
is limited exponentially in relation to the storage size.

‘Which of these inclusions are proper, that is, which of these
classes are actually larger than the next smaller class, is an
open problem. However, it is conjectured that all four are of
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different sizes. All that is certain is that the class EXPTIME
contains problems that do not belong to the class P.

How complex is it, then, to compute the winning prospects in games like
Hex, go-moku, go, checkers, and reversi? That is, given a playing board of
arbitrary size and the appropriately generalized version of the game, one
asks what complexity an algorithm would have to possess in order to work
for all board sizes. Can one find efficient algorithms, those with polynomial
complexity, for determining the winning prospects for an arbitrary configu-
ration? The answer is no, even if such were proved for all the games named
here. For the games Hex, go-moku, and reversi,” which always end with
the board completely filled, only a relative proof can be given, according to
which the task of determining the winning prospects of these games is at
least as difficult as all the problems of a large class for which there appears
no hope of ever finding efficient algorithms. It is doubtless inefficient to
compute the winning prospects of go and checkers.® The same holds for
chess and its Japanese counterpart shogi, whose generalizations to larger
boards are rather forced.”

The arguments that form the basis for such results are very complicated,
and we are unable to discuss them here. For every game one conceives of
a “construction kit” containing subconfigurations from which one can as-
semble configurations that satisfy certain conditions. In particular, inputs
of other decision problems are transformed into generally very large con-
figurations of the game under study, so that the original decision as to the
winning prospects is a consequence of the configuration thus arising. The
configurations are constructed so that in the further course of the game,
carefully calibrated multiple threats move over the playing hoard along pre-
scribed paths. Thus in the case of go-moku, open triple chains are strung

58higeki Iwata, Takumi Kasai, The Othello game on an n x n board is PSPACE-
complete, Theoretical Computer Science 123, 1994, pp. 329-340.

6J.M. Robson, N by N checkers is EXPTIME complete, SIAM Journal on Com-
puting 13, 1984, pp. 252—267; J.M. Robson, The complexity of Go, in: Proceedings
Information Processing 1983, pp. 413-417. The construction configurations contain kos.
The corresponding result without kos is weaker: David Lichtenstein, Michael Sipser, Go
is Pspace hard, in: Proceedings 19th Annual Symposium on Foundations of Computer
Science, Ann Arbor 1978, pp. 48-54; also in Journal of the Association for Computing
Muachinery 27, 1980, pp. 393-401.

7 Aviezri 8. Fraenkel, David Lichtenstein, Computing a perfect strategy for n x n
Chess requires time exponential in n, Journal of Combinatorial Theory A 31, 1981,
pp. 199-214; H. Adachi, H. Kamekawa, 5. Iwata, Shogi on an n % n board is complete
in exponential time, Transactions IEICE J70-D, 1987, pp. 1843-1852 (in Japanese).
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together; in Hex, almost closed linked paths are constructed with holes
only at some carefully chosen branch points.

Which decision problems can be transformed in this way? That is,
which decisions can be reduced to the analysis of a Hex configuration? If
one makes use of a multistage chain of proof as is done in complexity the-
ory, then the following picture emerges: what are transformed are not the
individual decision problems, but the representatives of an entire class all
at once. To obtain such a universal transformation one begins not with the
decision problem itself, but with a computer program that computes the
decision in question. The construction of the configurations is supported
by the mechanism by which the program alters the internal states of the
processor and memory within the computer, from the various inputs step
by step until the decisive output bit. In particular, in the cases under con-
sideration the sequential alteration of the bits is characterized so cleverly
via Boolean formulas that the equivalent configurations can be generated
from the original inputs in polynomially bounded time.

With Hex, but also with the other games mentioned, one can carry out
this construction for every decision problem that can be decided with a
program whose memory requirement is bounded by a polynomial function
of the input length (see Figure 29.1).

With the represented transformation a Hex configuration is generated
for each input of a given decision problem whose winning prospects are re-
flected by the originally posed decision and whose board size grows at most
polynomially as a function of the input length. That is, every problem that
can be decided with polynomially bounded storage space can he reduced to
the analysis of Hex configurations for which the size of the playing board
is not “essentially” larger than the input that was originally to be inves-
tigated. Hex thus belongs among the most difficult problems in its class,
since the following statement holds: if there exist decision problems that
can be solved in polynomially bounded storage space but not in polynomi-

Decision Problem Transformation into Hex
((exccuting compter pmoram\ ( s, polynomially bounded A
PC"}’ nomially bounded 7 transformation process
memory requ:remem}
Input1 —> yes Input 1 ——> Position 1 (white wins)

Input2 —> no Input 2——— Position 1 (black wins)
Inpurt 3 % no Input 3———> Position 1 (black wins)

L - L )

Figure 29.1. Transformation of a decision problem into Hex.
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ally bounded time, then the analysis of Hex configurations is an example
of a problem of such complexity.

Not only does all this sound highly theoretical and inapplicable in the
real world, that is, in fact, the case. But what was to be expected? For
how else could such far-reaching statements be justified that exclude the
possibility of the existence of simple formulas and procedures like those for
nim and Bridge-it for these other games?

There are additional consequences that affect the game directly: Hex,
reversi, and go-moku are polynomially transformable one into the other.
Thus at least in theory there exist efficient algorithms by which arbitrarily
large Hex configurations can be transformed into equivalent go-moku con-
figurations, and conversely. That is, white is in a winning position in the
one configuration precisely when she is in a winning configuration of the
other. A perfect Hex player, one who can always find an optimal move in
every configuration on an arbitrarily large playing board, would be able to
use the algorithm to become a perfect go-moku player, and vice versa.

In sum, the uncertainty of combinatorial games can be completely over-
come only in very simple cases, like nim and Bridge-it. Therefore, our
playing strategy must always remain inaccessible to codification, and we
are required always to attempt to overcome this deficit. There is plenty of
room for this, such as in the search for almost perfect algorithms whose
runtimes or results are very good as often as possible. A good example
is the approximation algorithm thermostrat presented in Chapter 24, with
which the complexity of special endgame situations in go can be drastically
reduced. Finally, we must not neglect to mention that complexity theory
makes statements only about the asymptotic complexity for large inputs.
How difficult go-moku and Hex are when played on a normal playing board
is a different question altogether.

Py

NP and PSPACE Complete Problems

Although efficient algorithms were discovered for a wide variety
of problems up to the beginning of the 1970s, other problems
proved intractable. Among these included primality tests, fac-
torization algorithms, linear optimization problems,® and many
combinatorial problems such as the traveling salesman problem.

8Linear optimization will be discussed in depth in Part III of this book. The simplex
algorithm, used widely in practice, leads usually, but not always, to a solution. However,
since 1979 there have been known efficient, that is, polynomially bounded even in the
worst case, algorithms (see Chapter 36).
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Attempts to demonstrate that some of these problems were
inherently difficult remained fruitless at first. The question
whether efficient solution algorithms existed remained open. A
great step forward was made in 1971 by Stephen Arthur Cook
(1939-), who came up with a completely new approach. Cook
proved that every decision problem in the class NP can be solved
by reducing it to a particular decision problem called the sat-
isfiability problem (see Note 5 at the end of the chapter). That
is, every instance of the original problem is transformed into
an equivalent instance of the satisfiability problem, so that an
efficient solution procedure of the satisfiability problem, if it
exists, can be used to obtain an efficient solution of the origi-
nal decision problem. It follows that the satisfiability problem
cannot be essentially easier to solve than any other problem in
the class NP. One therefore calls it NP hard. With this result
an entire avalanche was let loose, for the satisfiahility problem
can be reduced in turn, up to a polynomially bounded trans-
formation, into many other problems, including the traveling
salesman problem. These problems are also NP hard.

There are thus two possibilities:

e the two classes P and NP are equal.

In this case, one has simply not been clever enough to find
an efficient algorithm for the satisfiability problem or the
traveling salesman problem, even though such algorithms
exist.

e the class NP contains problems that are not in the class P.

All NP complete problems, as NP hard problems lying in
the class NP are called, are then examples of such diffi-
cult problems. In particular, there do not exist efficient
algorithms for the satisfiability problem and the traveling
salesman problem.

Which of these two possibilities actually obtains remains an
unsolved problem. Because of its great significance, the P = NP
problem was named one of the seven “millennium problems” by
the Clay Mathematics Institute in Cambridge, Massachusetts,
with a one-million-dollar reward for its solution.

In 1973, Stockmeyer and Meyer translated Cook’s method to
a class of conjecturally difficult problems. They showed that
there are also PSPACE hard problems and PSPACE complete
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problems. Hex, go-moku, and reversi are PSPACE complete.?
Checkers, go, chess, and shogi are more difficult, namely, EX-
PTIME complete, which excludes the possibility of an efficient
solution procedure, since the class P is a proper subset of EX-

PTIME.

Even sums of short Conway games are very difficult, which is
shown by the limits of approximately good procedures like ther-
mostrat, described in Chapter 24. Thus Morris proved in 1981
that relatively simple Conway games suffice for the construction
of sums whose winning prospects can be computed only with
PSPACE complete cost.!® In the configurations used by Mor-
ris, after three moves at the latest an integer is obtained. Even
simpler configurations, namely, those of the form {a | {b]|c}}
with three integers a,b,c, possess sufficient difficulties. With
these one can construct sums whose analysis is NP hard.!!

e s

Chapter Notes

1. It would not do simply to negate the condition, since one would have find a
nonconstructive criterion to prove the requisite unsatisfiability. Better are
the following variants, which are built on the winning eriterion for black
that we have described:

o the configurations in which white to move second possesses a winning
strategy can be characterized in Bridge-it by switching the colors of
the two players before the transformation into Shannon's switching
game. Lehman found a corresponding construction directly on the
level of the switching game.

* the configurations of the third class can be recognized by specifying a
winning move for black and one for white and confirming the winning
character of the configurations that arise using the criteria for the
other two classes.

9 A unified representation of PSPACE hard problems together with their application
to go can be found in Karl Riidiger Reischuk, Finfiihrung in die Komplexititstheorie,
Stuttgart 1990, Section 7.4.

10F. L. Morris, Playing disjunctive sums is polynomial space complete, International
Journal of Game Theory 10, 1981, pp. 195-205.

11See Elwyn Berlekamp, David Wolfe, Mathematical Go, Wellesley 1994, pp. 109-111.
The result is due to Yedwab and Moews.
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The generation of winning strategies can also be reduced to the case in
which black to move second is assured of a win.

The most effective of the known procedures is a method in which the
graph—at first without considering the + and — wvertices as special—is
decomposed in a particular way. See the cited work of Gabow et al.

Quadratic complexity means a quadrupling of the computational cost as
the length of input is doubled. Using the standard procedure, one can see
this from the equation

(aB + b)(cB + d) = acB® + (ad + bc) B + bd.

Here the numbers to be multiplied are broken into two pieces, each half
the length of the original number. One requires four multiplications of
numbers of this size. On the other hand, the additions and multiplications
by B and B? are significantly simpler, particularly if B is a power of the
base of the number system used, in which case B? is computed hy shifting
B to the left. If one rewrites the equation, using a 1962 idea of Karatsuba
and Ofman, to

(aB +b)(cB +d) = acB® 4 [ac+ bd — (a — b)(c — d)| B + bd,

then one needs only three multiplications of numbers with half-sized rep-
resentations, namely, ac, bd, and (a—b)(c—d). That is, the computational
complexity triples when the input length doubles. Since 2'5%5 = 3, we
conclude that the complexity is O (21'535]. The growth of the complexity
for very long numbers can be further reduced. See A.K. Dewdney, The
(New) Turing Omnibus, New York 1993, Chapter 25; Gilles Brassard, Paul
Bratley, Algorithmics: Theory and Practice, Engelwood Cliffs, NJ 1988.

. Theory and practice can be far apart in such cases, in particular, when

the computational demands rise significantly only with very long inputs.
An example of this phenomenon is the 1980 primality test of Adleman and
Rumely, whose computational complexity for an n-digit input is bounded
by O (ﬂ,‘ Inln "] for a constant c¢. Although there is no polynomial bound,
that makes little difference in computations of orders of magnitude that a
computer can handle.

The computational complexities of various primality tests and algorithms
for factorization have been well studied. Aside from the purely mathe-
matical interest, cryptographic applications have provided a strong motive
for such analyses. For example, the security of the 1978 RSA public key
encryption system of Rivest, Shamir, and Adleman is based, among other
things, on the belief that factorization is much more difficult, from the
point of view of computational complexity, than primality testing. Other-
wise, it would be possible to compute the secret key for decryption using
the public key for encryption.

More on this topic can be found in Carl Pomerance, Primzahlen im Schnell-
test, Spektrum der Wissenschaft, February 1983, pp. 80-92; Jirgen Wol-
fart, Primzahltests und Primfaktorenzerlegung, in: Jahrbuch Uberblicke
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der Mathematik 1981, pp. 161-188; John D. Dixon, Factorization and pri-
mality tests, American Mathematical Monthly 91, 1984, pp. 333-352; Paulo
Ribenboim, The Book of Prime Number Records, New York 1988, Chap-
ter 2; Martin E. Hellmann, Die Mathematik der Verschliisselungssysteme,
Spektrum der Wissenschaft 1979/10, pp. 93-101; Albrecht Beutelspacher,
Kryptologie, Braunschweig 1987,

4. The decision whether a number is prime belongs to the class co-NP. This
class is defined analogously to the class NP, except that here, every no
decision must be able to be confirmed with the help of suitable additional
information.

One can convince oneself relatively easily that the decision whether a num-
ber is prime is also in the class NP. The confirmation of the fact that a
given number n is prime can always be carried out by producing an integer
a such that the numbers a', a®,a%,...,a" ! are representatives of distinct
remainder classes upon division by n. (If b is in the remainder class of ¢
for division by n, then b = mn + ¢ for some integer m. We say that b is
congruent to ¢ modulo n and write b = ¢ (mod n). For example, for the
integer 7, the powers of a =3 are 3! =3,32=9=2 (mod 7), 3 =27=6
(mod 7),3*=81=4 (mod 7),3* =243 =5 (mod 7), and 3°* =729 = 1
(mod 7), giving the six distinct representatives { 3,2,6,4,5,1}. This test,
based on Fermat's little theorem, is very easy to carry out when the prime
factorization of n — 1 is available as additional information. One checks
that for no divisor ¢ of n — 1 is the expression o™~ Y/t — 1 divisible by n.
That the given factors of n — 1 are actually prime can be checked recur-
sively in a like manner (for Fermat’s little theorem see Chapter 15, “The
Generation of Random Numbers”).

It was long conjectured that the problem of primality testing belongs to the
class P, though no proof could be found. What has been known since 1976
is a technique based on Fermat’s little theorem that operates in polyno-
mially bounded time on the assumption of the extended Riemann hypoth-
esis. However, even in its standard version this conjecture has remained
unproved for over 100 years. It was given by David Hilbert as his eighth
problem in his 1900 address to the International Congress of Mathemati-
cians. (See Stan Wagon, Primality testing, The Mathematical Intelligencer
8/3, 1986, 58-61.) Moreover, Riemann’s conjecture belongs among the
seven unsolved problems that in honor of the hundredth anniversary of
Hilbert’s address were endowed with a prize of one million dollars each for
their solution by the Clay Mathematics Institute in Cambridge, Massa-
chusetts.

Without recourse to the Riemann hypothesis, the efficiency of a procedure
was proved in 2002 by the Indian mathematicians Agrawal, Kayal, and
Saxena. This algorithm always returns in polynomial time an answer to
the question whether a given number is prime. (See Folkmar Bornemann,
Primes in P: Ein Durchbruch fiir “Jedermann,” Mitteilungen der DMV 4,
2002, pp. 14-21.)
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5. The satisfiability problem asks whether the variables z1,..., z, of a given

Boolean formula can be instantiated with the values true and false in such
a way that the result is a true value. For example, the expression

x1 N (_'1:1 W :Cz}

is satisfiable with the values 1 = 1 and x2 = 2. Clearly, the satisfiability
problem belongs to the class NP, since a yes decision can be efficiently
checked with the supplementary information of the values with which the
variables are to be instantiated.

To reduce an arbitrary problem in the class NP to the satisfiability problem
via an efficient transformation, Cook proceeded as follows: the starting
point is a computer program reflecting the associated decision problem
that is capable of confirming every yes decision with the help of suitable
supplementary information. A Boolean variable is now assigned to every
bit in active memory and the processor. In particular, there are variables
for the ultimately valid decision bit, the bits of input, and the bits of
the supplementary information. Since such a bounded amount of memory
can be processed in polynomially bounded time, the number of variables
is also polynomially bounded as a function of the input size. Moreover,
based on the computer architecture, for every variable there is set up a
transformation equation arising from the variable values of the previous
step. Finally, using logical AND operations one obtains a single equation.

In this way, for every input length a single Boolean formula can be ef-
ficiently obtained, that is, with polynomially bounded cost, that charac-
terizes the total behavior of the computer program. Every input that is
decided with the help of suitable supplementary information leads to a
satisfiable equation, and this correspondence is reversible, since a satisfied
instantiation of variables always contains the supplementary information
for a confirmation. In this way, the existence of suitable supplementary
information is reduced to the satisfiability of the generated Boolean ex-
pression.
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A Good Memory and Luck:
And Nothing Else?

To win at the game memory, one needs a good memory and a bit of luck.
But are there additional strategic considerations that could improve one’s
chances of winning?

The game memory is a well-known children’s game. It is eternally fasci-
nating to young and old alike. Its most salient feature is that it requires
concentration.

The game appeared in Germany in 1959. Its creator is said to be Hein-
rich Hurter, who had played it among his family since 1946. However, the
game has many precursors, such as the English card game concentration,
whose roots can be traced to the 19*" century.!

Memory is usually played with a special deck of cards. Different pictures
are printed on the face side, with each picture appearing on two cards. The
game begins with the cards being distributed face down on the table. The
players take turns turning over first one card, and then a second, so that
all the players can see the cards. If a matching pair is revealed, then the
player takes the pair and draws again. Otherwise, the cards are returned
to their original positions face down. When all the pairs have been found
and removed, the player who has found the most is the winner.

Here we shall restrict our attention to the two-person version of the
game. We begin with the question of how the game might be approached

1Erwin Glonnegger, Das Spiele- Buch, Munich 1988, pp. 106 f.
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Figure 30.1. White to move: which card does she turn up second?!

mathematically. What are the random elements? Is memory a game with
perfect information? Fortunately for us, these two questions are not too
difficult to answer:

e random elements of the game are characterized by their expectations.
That is, if a player uncovers a card whose value he does not know,
then all possible resulting game variants with their probahilities and
corresponding results are considered. The score, positive or negative,
of a player is the number of pairs that he has taken in comparison to
those of his competitor.

e memory is a game with perfect information, since all players always
have the same information. We shall assume that the players’ memo-
ries are perfect, as it would be if the overturned cards remained face

up.

On this basis we may now apply Zermelo's theorem; that is, for every
game configuration we can calculate the winning expectation by means of
minimax optimization. But what is to be optimized? Are there different
strategies? Let us first consider an example in which three pairs of cards,
labeled 1, 2, and 3, are lying face down on a table, and the location of
a single card, a 1, is known. The player whose turn it is, let us call her
white, turns over one of the unknown cards, resulting in the situation of
Figure 30.1.

What should she do? Which card should white turn up second? There
are two possibilities:

1. It appears most profitable for white to turn over one of the four still
unknown cards.

e With probability 1/4 the matching card to the exposed 2 will
be turned, so that white obtains one point. Then she will have
another turn, knowing exactly one of the remaining four cards.

¢ With the same probability of 1/4 white will expose the matching
card to the known 1. This new information will give white's
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opponent black a certain point at the start of his turn, after
which black would move in the situation of knowing exactly one
of the remaining cards.

e Finally, with probability 1/2 white will expose one of the two
3s. In this case, black will be able to take all three pairs on his
next turn.

Since the expectations cancel out in the first two cases, this entire
variant gives white an expectation of

1 3

=X (=3)=—=.

2 (=3) 2
It must seem much less advantageous for white simply to expose the
already known 1. However, such a move is a legitimate means of
denying black any additional information. Therefore, let us consider
in detail what results from this move. The starting point for black’s
next move is the situation in which two different cards are known
among the three pairs, as shown in the following figure:

LIS IS (A AT
LYY sy
AL ;/ A ;5/
r A r P ,
i Y
o / A & S
LA LSS
LS LSS
AP A

‘We assume that black begins his turn by exposing one of the four
unknown cards:

e with probability 1/4 black turns over a 1, which he can immedi-
ately match. This wins him a point and another turn. With his
next move black can assure himself of the two remaining pairs
unless he draws a 3 and then a 2, so that the two remaining pairs
go to white; the probability of black’s second maove turning out
that way is )

><1—
273

LI ]

3. With probability 1/4 a 2 will be chosen. Regarding expectations, this

case is equivalent to the first.

4. With probability 1/2 the first card drawn will be a 3. Despite the

unlucky beginning, it makes no sense for black to draw a known card
as his second selection, since then white will be assured of winning all
three pairs. Therefore, black goes for the small probahility of drawing
another 3.
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Figure 30.2. The configuration P, ;.: k of the total of 2n cards are known.

e With net probability of (1/2) x (1/3) = 1/6 black has good luck
and finds the 3. Then he collects the remaining two pairs.

¢ With net probability of (1/2) x (2/3) = 1/3 black has bad luck
and draws a 1 or a 2. This allows white to win all three pairs.

Altogether, white therefore has in this variant a winning expectation

of

X [zx(w3)+%x(—-1+2)}+

1
4 3

1 2 1 1 1 1

=X |=x(-3)+-x(-14+2)| —=%x3+-x3=—-.

4 [3 (=3) 3 ( )] 6 3 3
This shows that it is to black’s advantage to make a nontrivial move
(that is, not simply “pass” by turning over two known cards). Avoid-
ing the entire move, which black can manage by turning over two
already known cards, is therefore not to be recommended.

With respect to our initial question, which card white should expose
second, it has become clear that the second variant, as destructive as it
may seemn, greatly reduces white's expected loss. This shows as well that
with strategic skill one can increase one’s winning prospects in the game
memory; this seemingly simple game contains some hidden surprises. Such
results were published first by Uri Zwick and Michael Paterson, who in
1993 offered a complete analysis of memory,? in which they determined re-
cursively the optimal strategy for all possible memory configurations. The

2Uri Zwick, Michael S. Paterson, The memory game, Theoretical Computer Science
110, 1993, pp. 169-196; see also Ian Stewart, Mathematische Unterhaltungen, Spektrum
der Wissenschaft 6 1992, pp. 12-15; David Gale, Mathematical Entertainments, The
Mathematical Intelligencer 15/3, 1993, pp. 56-60. In a postscript to their publication,
Zwiick and Paterson mention that after they had completed their work they became
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Figure 30.4. The configuration P; ;.

basis of their work is a recursion formula that allows the computation of
the winning expectations of all possible memory configurations in the case
of error-free memory of the players. Every such configuration is character-
ized by two numbers, namely, the number n of remaining card pairs and
the number k of already known individual cards, where k& can take on all
values between 0 and n (see Figure 30.2). These numbers do not take into
account the special case in which a player knows the locations of complete
pairs. But this poses no problem, since in such cases the optimal behavior
is clear.

FEach such configuration, which we denote by P, j, corresponds to a
minimax value of v, j, which corresponds to the expected pair surplus
accruing to the player whose move it is under mutually optimal play. As
an example, we consider the configurations Py 5 and Ps .

In the configuration Ps g depicted in Figure 30.3, two pairs remain on
the table in which no card has yet been identified. The next move involves
no skill. Luck alone determines whether the two of the four cards drawn
will match. If a player draws, with probability 1/6, one of the two pairs,
then he wins both pairs. In the other cases the opponent can win both
pairs:

1 2 2
'Uz‘()———SX2+8X(2)—-— 3

For the configuration P; ; shown in Figure 30.4 we return to our original
analysis. Its starting position is achieved with probability 4/5, namely,
whenever a 2 or 3 is chosen as the first card. Otherwise, that is, with
probability 1/5, a 1 is uncovered, which permits the completion of a pair.

aware of an analysis of the game memory in Dutch by 8. H. Gerez. This work, which
was done in 1983 at the University of Twente, contains some significant results on
memory strategies and their optimization.
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The next move is from configuration P, g:

1 1 1

X ("‘5) + 3 X (1‘+‘ 1}2.[)) = ""3.
The general situation for an arbitrary configuration P, ; can be investi-
gated analogously. The player has up to three significantly different move
options, ignoring obviously bad moves such as beginning a turn with a card
that is already known and then searching for its mate. According to the

number of newly exposed cards, the move types are designated as types 0,
1, and 2:

e a 0 move amounts to passing. One simply turns over two known
cards. Such a move is possible in cases of n = k > 2. In such cases
a 0 move prevents the winning expectation from becoming negative,
though at the cost of terminating the game if both parties make such
a move, even though there are cards remaining on the table.

e with a 1 move, first an unknown card is exposed. If it does not form
a pair with a known card, then no attempt at forming a pair is made.
That is, apparently destructively and with no chance at winning a
point, a known, nonmatching, card is turned over. This move is
possible in cases n — 1 > k > 1.

e a 2 move is the usual type of move. One first turns over an unknown
card, and if it does not match a known card, an additional unknown
card is exposed. A 2 move is always possible except in the cases F; o,
Py, and Pl,l-

The winning expectations of the two last move types can be determined
recursively:

(1) 2(n — k)
= 14 Vo1 bo1) + = - (=Vn k1),
Vg = 5 (L Unorg-1) + - (SUnks),
k
1’,‘3; = o k(l + Un_1,k-1)
2n—k) (Q4+uvpgp+k(-1—vo_ 1) +2(n—k—1)  (—vnrs2)
2n — k 2n—k—1

e k(l + Vn—1,k—1)

_ 2(71' - k) . (k - 1)(1 + t]n—l,k) + 2(”’ —k — 1)®n.k+2
2n -k 2n -k -1 '
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i~ 0 I 2 3 4 5 i T 5 9 10 11 12 13 14
o 0000 1000 -0667 -0.200 0114 0029 0002 0053 -0.033 0 0035 0038 0014 00200 0017 -0.016
1 1000 D667 -0.200 0114 0029 0002 0033 0033 0035 0038 0014 00200 0017 0018
2 2000 0333 0267 0043 009 0026 0111 0024 0087 0033 0067 0.023 0056
3 3000 0000 0543 0124 0220 0046 0176 0020 0153 0028 0118 0.024
i 4000 0000 0FTL O 0095 0367 0068 02460 0024 0207 0025 0167
bl SO00 0000 00854 0065 0504 0064 03260 0030 0261 0.023
6 6000 0000 1,090 0035 0642 0 0412 0034 0318
7 7000 0.000 1304 0005 0766 0046 0400 0.036
8 8000 0000 LA%6 (000 0883 0.034  0.586
] G000 0000 1797 0000 0897 0.023

10 10000 0000 1995 0000 1109
11 1L000 0.000 2199 0.000
12 12,000 0000 2300
13 L300 000
14 14.000

th optimal play: & individual cards

Table 30.1.  The winning expectations tn i W
among 7 pairs are known.

The formula is relatively easy to verify for a 1 move: first, one of the
2n — k unknown cards is turned over. In k cases the player finds a card that
can be converted at once into a pair, and the next move take place from
the configuration P, _, .. In the remaining 2(n — k) cases the player has
bad Iuck and so turns over a known card, so that his opponent is now in
configuration P, j11.

For the second formula we have still to deal with the case that the
first card does not lead to an immediate pair. The probability of that is
2(n — k)/(2n — k). Then together with the chosen card there are k + 1
cards known of the n pairs. In a 2 move the player, trusting to luck, turns
over one of the additional 2n — k& — 1 unknown cards. One of these cards
is a match for the first, which would bring a point and another turn in the
conficuration P,_, ;. For the remaining 2(n — k — 1) cards neither player
wins a point, and the opponent draws from configuration P, j.;2.

In reverse chronology, starting from v, , = n, n >0, and v, = 1, all
winning expectations v,  with n > k > 0 can be calculated. The selection
of the optimal strategy for n > 2 is made using the formulas

2
Vno = 1;53‘3]-:
Up,1 = max ('Uill}l'“f}l) )
Up p = Max (0, vfllibffl) for2<k <n.

The last equation allows for the possibility of a 0 move in order to
avoid a negative expectation. The winning expectations thus calculated
for 0 < k < n < 14 are shown in Table 30.1, with the associated optimal
moves in Table 30.2.
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Eknj0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 2 2 2 2 2 2 2 2 2 2 2 2 2
1 21 2 1 1 1 2 1 2 1 2 1 2
2 1 21 2 1 2 1 2 1 2 1 2 1
3 1 01 2 1 2 1 2 1 2 1 2
4 1 0 1 2 1 2 1 2 1 2 1
H 1 01 2 1 2 1 2 1 2
6 1 0 1 2 1 2 1 2 1
7 1 0 1 2 1 2 1 2
8 1 0 1 2 1 2 1
9 1 0 1 2 1 2

10 1 0 1 2 1
11 1 0 1 2
12 1 0 1
13 1 0
14 1

Table 30.2.  The winning expectations vy, ;; with optimal play: & individual cards
among 11 pairs are known.

It remains to remark that in the case of configuration Py 3, in addition
to the tabulated 0 move, the 2 move is equally optimal.

Within the confines of our discussion, we see that the game memory
can be calculated with a spreadsheet program. Paterson and Zwick, on
the other hand, went far beyond the level presented here in their publica-
tion in order to obtain general results on optimal strategies for arbitrary
configurations. To that end, they compared the various strategies on the
basis of more complex estimates. Thus they could confirm that hidden
behind the regularity of Table 30.2, in which the 1 and 2 moves alternate
in checkerboard fashion, lies a general law, by which the following strategy
is optimal:

e if n + k is odd with & > 2(n + 1)/3, then make a 0 move. If the
opponent does likewise, the game is over.

e in the case of an even value n + k with k > 1, as well as for the
exceptional configuration Py 1, make a 1 move.

e in all other situations make a 2 move.




3

Backgammon: To Double or
Not to Double!?

If a backgammon player believes himself to be sufficiently ahead, then he has
the option of doubling the bet. His opponent must either accept the double
or lose the amount of the current wager. Needless to say, a player who is
behind has no interest in doubling. Are there thus doubling situations that
arise in error-free play?

The roots of backgammon and its variants go back to antiquity.! For
example, the Romans played a game called ludus duodecim seriptorum, the
game of 12 lines. Later references to backgammon are found in paintings
and drawings in which the characteristic backgammon board appears. One
of the oldest such representations is a miniature from the Middle Ages,
appearing in the Mannessischen Handschrift of 1330.
Except in the countries of the eastern Mediterranean, where the backgam-

mon variants Plakato and goul continued to be widely played, backgammon

I'More information on the rules, history, and variants can be found in David Pritchard,
The Famaily Book of Games, Brockhampton Press 1983, pp. 22-27; Riidiger Thiele, Das
grosse Spielevergniigen, Leipzig 1984, pp. 182-184; Erwin Glonnegger, Das Spiele-Buch,
Munich 1988, pp. 31-37; R. C. Bell, Board and Table Games from Many Civilizations,
New York 1979, volume I, pp. 23-46 and volume II, pp. 12-23; L.U. Dikus, Black
Mammon, Spielbox 2, 1986, pp. 14-16; Wir sind die Clochards ohne Durst und Hunger,
Der Spiegel 49, 1987, pp. 244-250. Greater detail can be found in backgammon books
such as Oswald Jacoby, John R. Crawford, The Backgammon Book, New York 1970; Tim
Holland, Beginning Backgammon, New York 1973; Charles H. Goren, Goren’s Modern
Backgammon Complete, New York 1974; Bill Robertie, Backgammon for Winners, New
York 1993.

326




Combinatorial Games 327

declined in popularity over time. It saw a renaissance only in the 20"

tury. The first phase began at the end of the 1930s, when the game was
rediscovered by London’s intellectuals. In the 1970s came the great break-
through, when it became fashionable in the USA to play the game.

On its face, backgammon is a race governed by the luck of the dice,

cen-

similar to pachisi. The two players attempt to get their own pieces to the
goal. On the way, opposing pieces can be hit under certain conditions,
namely, if a single such piece lies on a field that the player can reach. The
distance that one is allowed to move is determined by the throw of two
dice. A player moves a piece by the amount shown on one die, and then
another or the same piece the amount shown by the second die. If doubles
are thrown, the player moves the number shown on a die four times.

Backgammon is much more complex than the children’s game pachisi.
First of all, there are many more pieces, and up to two of them can be
moved on a single turn, even four in the case of doubles. Thus backgammon
acquires a combinatorial character above and beyond the element of chance,
which is quite strong due to the interaction between the pieces on account
of the small number of fields and the fact that the players move in opposite
directions. Whoever believes that all one needs to win in backgammon is
a bit of luck is sorely mistaken. Let him try. He will rarely succeed.

Like chess, backgammon is played in international tournaments. The
highest honor that one can achieve is to be crowned world champion. Com-
petition from computers came much earlier to backgammon than it did to
chess. Thus, for example, already in 1979 the then reigning world cham-
pion Luigi Villa was defeated 7 : 1 by a computer program designed by
Hans Berliner.?

The quiet that prevails at a chess tournament is hardly imaginable at a
backgammon tournament. The reason for this is the dice. They are always
making noise, for the pace is rapid: there is no point taking a great deal of
time in analyzing a position. One recognizes certain patterns and quickly
makes a realistic risk assessment. Both of these can be accomplished quickly
by an experienced player.

One of the most attractive elements of backgammon is the possibility
of doubling. A special die is used, called the doubling cube, which displays
on its six faces the numbers 2,4 8 16,32,64. It was introduced in the
1920s and established the custom of playing backgammon for money. Since

?Hans Berliner, Ein Computer spielt Backgammon, Spektrum der Wissenschaft 8,
1980, pp. 53-59; Hans Berliner, BKG: A program that plays backgammon, Com-
puter Science Department, Carnegie-Mellon University, Pittsburgh 1977; Hans Berliner,
Backgammon computer program beats world champion, Artificial Intelligence 14, 1980,
pp. 205-220. The last two publications are reprinted in Dawvid N. L. Levy, Computer
Games I, New York 1988, pp. 3-28, 20-43.
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money is involved, the doubling rule makes sense, and it is used even in
tournaments.

In order to prevent a player from continually doubling the wager, no
player who doubles is allowed to double again before his opponent doubles.
When the game is played, the right of the next redouble is indicated by
placing the doubling cube on the side of the board of the player who has
the next right to double. After the first double, the face labeled 2 is placed
upward. For the remainder of the game, the only player permitted to double
is the one with the doubling cube on his side of the board. If the opponent
accepts a redoubling, he receives the doubling cube, which is turned so that
the next higher level is displayed.

Of course, a player whose double or redouble has been accepted can
make better use of his positional advantage. However, he loses some strate-
gic potential, namely, the option of doubling at a more suitable time. This
loss of initiative is particularly apparent in the case of a redouble: if a
player can redouble, but does not do so, he can wait calmly for a better
opportunity, while his opponent, should the tide turn in his favor, will cer-
tainly regret not having the opportunity to redouble. In contrast, passing
up an opportunity to make the first double leaves a player exposed to the
possibility that his opponent will double if the tide shifts in his favor. Thus
not redoubling can have more advantages than not doubling. Therefore,
for a redouble, the current position must be relatively more advantageous
than is required for the first double.

Let us introduce an example to show why in error-free play doubling
and redoubling can take place. Consider the situation shown in Figure 31.1,
in which white is to play.

1211109 B 7 6 543 21

1211109 8 7 654321

Figure 31.1. Should white double?
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What are the chances that the player to move will bear all his pieces
off the board in one turn?

e White wins on her first move by rolling any of the following combina-
tions (where order does not matter): 2-2, 3-3, 4-4, 5-2, 5-3, 5-4, 5-5,
6-2, 6-3, 6-4, 6-5, 6-6. Therefore, the probability that white will win
in one move is 19/36.

e If white does not succeed in bearing off both of her pieces on her
turn, then black wins on his next turn. Thus the probability that
black will win is 17/36.

Thus without doubling, white’s winning expectation is 19/36 x 1 +
17/36 x (—1) = 1/18. And if she doubles? Let us see first how black should
deal with the situation:

¢ if black does not accept a double, then the game ends, and white wins
one point.

e if black accepts, then white's expectation is 1/18 x 2 = 1/9.

Thus it is black’s interest to accept the double despite his positional
disadvantage, for even after a double his expected loss is much less than
an entire point, which he would lose by accepting.

The last argument applies not only to this special situation, but to every
doubling: a player possessing odds of winning of at least 1/4 should accept
a double, since against a certain loss of one full point acceptance represents
the lesser of two evils, with a probability of at most 3/4 of losing a doubled
bet, but in return the probability of at least 1/4 of winning a doubled
bet. And of course, the player will not have to fear the consequences of
a redouble, since having accepted the double, he now has control over the
doubling cube.

The situation of our first example, in which the game will end in at
most two moves, can be generalized. We assume, then, that it is white’s
turn and that she will win on that turn with probability p. Thus black
will win with probability 1 — p. We now calculate the minimax value for
white. We compute the winning expectations in the three possible doubling
situations:

e without a double: px 1+ (1 —p) x (-1) =2p — 1,
e with an accepted double: p x 2 4 (1 — p) x (—2) =4p — 2;

¢ with a declined double: 1.
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winning
27 expectation
accepted
double
_ minimax
1 declined expectation
double
no
double
probability on
T T 1 P the first move
e -] 34 1
-1
no accepted declined minimax
double double double strategy

Figure 31.2. Two-move game: when should white double?

Altogether, this yields a minimax value for white of
max(2p — 1, min(4dp — 2,1)).

The significance of this formula can be seen in Figure 31.2. There one
can see clearly that white should double in the position under consideration
as soon as she has the smallest advantage, that is, in the case p > 1/2. Black
should accept if white’s winning expectation does not exceed 3/4.

In the positions that we have been considering, black also has the option
of doubling if he gets a turn. White would decline the double, of course,
and therefore lose the current bet, just as if no doubling had taken place.
However, if a game can last more than two moves, then, of course, the pos-
sibility of multiple doublings must be taken into account. Let us consider
the position shown in Figure 31.3, where again it is white's move.

This configuration differs only slightly from that of the first example;
a second black piece has been added, so that white’s chances of winning
are even greater than before. Let us see how that game can progress,
first without regard to doubling. To make things clearer, in Figure 31.4
all the positions offering the same probabilities are combined into a single
node. Along the edges are the conditional probahilities corresponding to
the results of the dice.

Here is an explanation of the possible courses of the game as shown in
Figure 31.4:

e as in the first example, white wins on the first move with probability
19/36. The other dice combinations, those that do not lead to an im-
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1211109 8 7 6 54321

1211109 8 7 6 54321

Figure 31.3. Black’s situation is even worse than that depicted in Figure 31.1.

mediate win, must be subdivided into groups, depending on whether
white can bear off all her pieces on her second move. This is always
the case, in fact, except for the roll 2-1. If white rolls 2-1 twice, then
two moves do not suffice.

e if black gets a turn, then he can bear off both of his pieces with
conditional probability 29/36, namely, with every roll except 1-1, 1-
2, 1-3, or 2-3. If one move does not suffice, then a second move will.

1. white's first move: ;,g
]
36

+1
1. black's first move: -

1 @

2. white's second move: 1

2. black's second move:

Figure 31.4.
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accepted double
or redouble!

1. white's first move: 326
declined
+2 double @
1. black’s first move: gg ;6 22 ;5
-2 +2 -2

Figure 31.5.

And how does doubling affect the winning expectations? We begin with
the case shown in Figure 31.5, in which white, in position A, doubles or
redoubles before her turn. We assume that the basic amount wagered is one
unit; that is, all amounts are to be understood as multiples of the doubling
level reached at this point in the game. Black will accept the double in
any case, since his winning probability exceeds 1/4. If white fails to win
on her first move, then black will redouble, forcing white to decline, since
her chances in both B positions are too small: in position By, which is a
two-move position of a type already considered, the winning probability of
7/36 is less than 1/4, and in position Bs the situation is even worse, though
it could grow to 7/36 through a further redouble. Altogether, in the case of
a double or redouble we obtain the minimax remainder of the game shown
in Figure 31.5; the winning expectation is 19/36 x 2+ 17/36 x (—2) = 1/9.

However, even if she is in possession of the doubling cube, white in
position A can decline to redouble. Then we obtain the minimax game

does not
redouble!

1. white's first move:
+1

1. black's first move:

declined
redouble

1

H I .
2. white's second move: 36 36

+1 -1

Figure 31.6.
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1. white's first move:

+1 ot [-9)
1. black’s first move: 2 % 2 A
-1 +1 -1
Figure 31.7.

shown in Figure 31.6, in which white can expect a winning amount of
19/36 x 1+ 17/36 x (29/36(—1) + 7/36 x 1) = 155/648.

It is to white’s advantage not to redouble. This appears paradoxical
if one compares the situation with that of the first example. There black
does not have a piece on point 4, and despite white's worse prognosis, it
made sense to redouble. How is this phenomenon, known as the Jacoby
parador, to be explained? All we need to do is to remind ourselves of
what we have already learned. Redoubling permits, to be sure, a better
exploitation of an existing advantage, but at the same time, it gives a hit
of initiative to the opponent, and this initiative has a higher value in the
second example than in the first, where this initiative cannot be profitably
implemented by black. For this explanation we also have the fact that a
double, unlike a redouble, is absolutely to be recommended: in declining
to double, white cannot block later doublings by her opponent. But let us
look again in detail at the course of the game shown in Figure 31.7: the
winning expectation for white is 19/36 x 1 + 17/36 x (—1) = 1/18, which
is less than for a double.

Taken all together, the position that we are considering offers the win-
ning prospects tabulated in Table 31.1.

If one wishes to investigate more complex positions, then the method
used in this example of representing the course of the game graphically
will become unmanageable. But even a computer-supported calculation
will soon reach its limits due to the large number of positions that have to
be considered. Therefore, we need to make some simplifying assumptions.
To this end, various mathematical approaches have heen tried in recent
decades. They are based almost exclusively on the so-called running game,
in which the opposing armies have already passed each other, and thus no
further stones can be hit. Furthermore, many wins based on a gammon are
also not considered:

¢ as we did in Chapter 14, a model is created in which each player has
only a single piece, which has to cover a distance of, say, 60, 80, or
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The doubling winning

cube belongs to...  Jwhite. .. black... expectation

...white ...redoubles ...accepts 0.11111
...redoubles ...declines 1.00000 ]
...does not redouble - (0.23920 =5 diceand mne

..o one yet ...doubles ...accepts 011111 o
...doubles ...declines 100000 |=—4— 1
...does not double - 0.05556 |<

...black - - 0.05556 ﬁr e e v

for comparison: game without doubling 0.23800

Table 31.1. Winning expectations for white for the position shown in Figure 31.3
(white: 5-2, black: 4-1).

even 100 fields. This two-piece model has some serious shortcomings
due to the dice points that are lost in bearing off.

e one obtains a simpler model when one considers only the winning
probabilities of a game governed strictly by the throws of the dice. In-
stead of the concrete dice results and their probabilities, one considers
a continuous process in which the winning probabilities change ran-
domly. The details of the random process are ignored. One assumes
only that the changes occur continuously, that is, without breaks.
This assumption suffices for obtaining some quite fundamental re-
sults.

e positions with only a few pieces can be investigated explicitly. This
is best done recursively, where intermediate results are stored in a
sufficiently large database. In practice, such results are not very
usable, since they do not cover much ground, but they would be
usable in theory if, for example, an approximation model was used
that gave heuristic “rules of thumb” based, for example, on point
counts that indicated whether a move was sufficiently close to optimal
in the majority of cases.

e investigations of positions characterized parametrically are suitable
only for elementary considerations. Thus one may investigate all po-
sitions that lead to the end of the game in at most three moves. Such
positions are characterized by two parameters, namely, the probabil-
ity of a win for each of the two first moves.?

3E. 0. Tuck, Doubling strategies for Backgammon-like games, Journal of the Aus-
tralian Mathematical Society 21 (Ser. B), 1980, pp. 440-451. Tuck investigates, among
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We turn now to positions in which the game lasts for a number of moves.
We turn our attention to white’s winning probability in a game governed
solely by the dice. In the course of a game this probability changes move
by move. At the start, we leave completely open the details of how these
random changes occur. However, the probabilities must be compatible with
the initial values for the various developments; that is, in relation to a later
point in time, the average improvements and worsenings must be in bal-
ance, so that altogether the expected change is zero. One can now idealize
the course of the game as a continuous process in which the winning proba-
bilities change continuously. This backgammon model was first investigated
in 1975 by Emmett Keeler and Lel spencer.* Figure 31.8 shows a typical
game, during which the winning probabilities change continucusly toward
one of the two possible end values of 0 and 1. Two additional courses of
the game are sketched in.

It has already been mentioned that from one point in time to another,
the expected change in probability is equal to 0. However, changes about
whose probability one is asking need not necessarily relate to two fixed
points in time. For example, how probable is it that white starting from
the 4/5 level reaches the 1 level without passing through the 1/5 level?
Since one of the two levels will be passed through in any case, the sought-
for probability p satisfies the equation

| W=
| =

=px1+(1-p)x

n
n

That is, p = 3/4, which is indicated in Figure 31.8 by the two arrows.

We have not yet commented on the meaning of the two levels indicated
in Figure 31.8 by dotted lines, in which white wins with probability 1/5 or
4/5. We know already that a player should accept a double if his winning
chances are at least 1/4. If black should play so that he declines a double
precisely when white has a winning probability of at least 4/5, then white
should not double before that; that is, she should not double below a
winning probability of 4/5. This is so because this being a game with

other things, games that last at most three moves in which doubling according to the
rules of backgammon is allowed. Thus, for example, the Jacoby paradox can be ob-
tained systematically. Namely, white can double offensively (in more situations) if her
probability of winning in one move increases. In the conditional probabilities that black
wins on the second move the situation is reversed: with high values it is advisable for
white to double less offensively. In regard to redoubling, the monotonic influence of the
parameters can be violated if white wins on the first move with probability between 0.5
and 0.6 and black wins on the second move with conditional probability 0.75.

4Emmett B. Keeler, Joel Spencer, Optimal doubling in Backgammon, Operations
Research 23, 1975, pp. 1063-1071; see also 24, 1976, p. 1179. Reprinted in David N. L.
Levy, Computer Games I, New York 1988, pp. 62-70.
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white's winning

probability
1 white wins
%
4 white doubles, black decines
5
1
1 -
N black doubles, white declines
0 black wins
Time
start of end of
game game

Figure 31.8. Double or not! Accept or not?! Games with continuous change in
winning probabilities.

perfect information, one may assume without loss of generality that white
knows black’s level at which he declines a double. Thus to double below
that level represents a risk for white. For in every game that she wins, the
4/5 level will certainly be passed, and in games that are lost, doubling is
bad in any case.

In contrast to real backgammon, in which the winning probabilities
develop discontinuously, in the model that we are considering there is no
position in which the players are forced by optimal play on both sides to
double and to accept that double. But what level is optimal for a doubling
on the one hand, and for declining the double on the other? Is it really
the level 4/5 as shown in the figure, and symmetrically the 1/5 level on
the other side? The level that is best can be recognized in that white,
regardless of whether black accepts or declines a double, has the same
winning expectation. And in fact, such is the case for the 4/5 level and for
no other:

e if black declines the double, then white wins one point.

e if black accepts the double, then the game develops at some time with
probabilities 3/4 and 1/4 as determined above to the levels 1 and 1/5,
respectively. In the first case, white wins a doubled bet, while in the
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second, black assures for himself with a redouble the same win level.
In this way, white can expect altogether a win of

3 1
ZXQ-'-ZX(_Q)"I'

Let us summarize: if the probabilities develop continuously during a
continuously progressing game, then one should double and redouble pre-
cisely when one’s winning chances reach 80%. That is also the bound above
which the opponent should decline a double. Figure 31.9 shows the effect
of these minimax strategies. There are shown three winning expectations
depending on the current winning probability. The dotted line represents
the winning expectation when no doubling is permitted at all. If white to
move next is allowed to redouble, then her winning expectation increases
according to the upper, heavy, line. In the reverse case the expectation
worsens analogously. As one can see, there corresponds to possession of
the doubling cube a constant value of half a wager, unless one player is too
far ahead. Moreover, the doubling cube in any backgammon-type game can
never have a value of more than half the current wager, since the advantage
for any one player is limited by two factors: on the one hand, a player can
at most double his winning expectation, while on the other, the achievable
winning expectation can be limited by the opponent to 1.

At the end of a backgammon game, a single throw in the actual race
can drastically change the odds. Such sudden changes have little to do with
continuity, and so while the results that we have obtained are interesting in
principle, in practice they have little to offer for endgames. Thus in a real
game, the doubling cube seldom achieves its theoretical maximum value
of 1/2. Much more realistic is the model in which each of the two players
must move one piece over a possibly long stretch to the goal. Such model

white's
/N winning
19 expectation dotted line:
game without
i
white may doubling
redouble
0 I T 1 white's
0.2 0.6 0.8 1 probability
value of the black may of winning
doubling cube redouble
-1

Figure 31.9. Winning expectations in a continuous game.
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positions are representative for normal backgammon to the extent that one
adds the fields to be traveled by the individual pieces from their original
positions and then estimates how many dice points will be lost in bearing
off.

In comparison to real backgammon, the two-stone model is much sim-
pler in its combinatorial elements. The reason is the reduced number of
possible positions, so that the actual race is completely removed from the
players’ influence. All that remains are the random influences and the
decisions about doubling.

Every model position is characterized by two point numbers and the
current state of the doubling cube. By symmetry, it suffices to investigate
all positions under the assumption that white is to move. The winning
expectations can be determined most easily recursively, where one stores
the results obtained in a database® so that they can be accessed for use
in the analysis of other positions. If one restricts consideration to the
pure race part of the game, with no player allowed to double, then white’s
winning expectation from a position G can be derived from the formula

Enone(G) == Z P(d)EnC‘ne(@)'
d

Here G denotes, for a possible roll d, which appears with probability P(d),
the position attainable with that move, and the subscript on E, ... indicates
that none of the players doubles. To obtain again a position for which it is
white’s turn, the colors of the positions that arise are interchanged, which
is indicated in the formula with the overbar. In changing colors, the signs
of the expectations must be changed. If one is interested in the winning
probabilities in the dice race, then one obtains them using the formula

P(G) = 5(1+ Eaone(G).

To optimize the doubling strategy, each position must be analyzed three
times, namely, depending on who is in possession of the doubling cube. In
each case, a winning expectation is calculated based on the current level of
the wager. For expectations Eypite and Eplack we assume that the exclusive
right for the next redouble belongs to white or black, respectively. The
expectation Epqp, represents the case in which the first double has not yet
taken place, and both players have the right to double. If white is unable to

5With the model positions, the intermediate results are of course stored most natu-
rally in arrays or in sets of random access files. But by the time one is investigating real
backgammon positions, one should consider the use of indexed tables within relational
databases. The coded positions are used as keys.
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double or redouble, then her expectation is as above, where in the exchange
of colors the right of the next redouble must be taken into account:

Eblack(G) = Zp(d)Ewhlte(@)
d

In the other cases the corresponding formulas hold only for rhe case
that white declines to double at his current turn or if the opportunity to
double is unavailable:

Eupite (G*) = = P(d)Bpiac(G9),
d

Ebotn (G™) = = >~ P(d)Ebom (G).
d

Moreover, at the beginning of the move, the decisions by the players
relating to doubling must be taken into account with regard to the minimax
value:

Ewhite (G) = max (Ewhite (G“’“) ,min(1, 2Eb|ack(G)),
Ebotn (G) = max (Epotn (G“’") ,min(1, 2Ep1ae(G)).

Both cases are based on the same sequence of decisions, within which
white either simply throws the dice or first doubles the wager. In the case
of a double, black may choose the minimal winning expectation from his
two choices. Either black declines, so that white wins the value 1, or white
obtains double the bet that she could have achieved without access to the
doubling cube.

Figure 31.10 shows how large white's advantage must be for doubling
and redoubling to be worthwhile. Furthermore, one can see the degree of
advantage at which it is better for black to decline a double or redouble.

white's .
advantage necessary white advantage for... declining
15 ... redoubling
... doubling
10
5

0
20 30 40 50 60 70O 80 90 100 110 120 130 140 150
-5 white's points

Figure 31.10. Two-stone model of backgammon: one piece per player.
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Of note is the constant distance between the three curves. Although
the rate of growth decreases to the right, one can take the average gradient
of the curves in the region shown to be about 1/10, where the basic values
of —1, 0, and 3 are to be added. Thus for doubling in the backgammon
model we have the following nearly optimal recommendations:

e with an advantage of at least 10%, that is, if the second player has at
least 10% more field to traverse, then one should double or redouble.

e for doubling it suffices to have an advantage of one field fewer to
traverse than the 10% value.

e if the advantage is greater than 10% plus three fields, then black
should decline the double.

These laws were discovered in the mid-1970s in simulations and calcu-
lations.® Backgammon experts such as Crawford and Jacoby had earlier
offered authoritative advantages of 7.5, 10, and 15%. Since then, the results
for actual backgammon positions have found their way into the backgam-
mon literature.” But how is one to determine the “correct” number of fields
in a given backgammon position? That is, what position in the two-piece
model reflects a particular backgammon position so that the probability
distributions for further moves most nearly correspond? An approach to
finding suitable model positions consists in approximating the number of
lost dice points in bearing off. Edward Thorp, known for his work on
blackjack, obtained the approximation formula

p+2a+a; —b,

where p is the actual number of fields, @ the number of pieces, a; the
number of pieces on the first field, and b the number of occupied fields in
the range 1 to 6. If one generates the model position for both players using
this estimate, then good strategic recommendations within the limits of
the model’s criteria result.

Finally, we note that the minimal advantage numbers presented above
behave much more regularly than the corresponding probahilities that
would exist in a game based purely on dice. Depending on the distance to

5In addition to the work by Keeler and Spencer cited above, see Norman Zadeh,
Gary Kobliska, On optimal doubling in Backgammon, Management Science 23, 1977,
pp. 853-858, reprinted in David N. L. Levy, Computer Games I, New York 1988, pp. 71—
T7. Additional investigations are reported in a review article by Edward O. Thorp,
Mathematical Reviews 57, 1979, #2594,

7Jeff Ward, The Doubling Cube in Backgammon, San Diego 1982; Bill Robertie,
Advanced Backgammon, Arlington, MA 1983,
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the goal, the following winning probabilities are necessary for a favorable
redouble: 0.69 for 30 fields, 0.73 for 60 fields, 0.74 for 100 fields, and 0.75
for 150 fields.

As with the positions of the two-stone model, one may investigate,
within limits, actual backgammon positions. There are additional difficul-
ties posed by the various possible moves among which a player can choose
given the values that appear on the dice.® Of course, white attempts to
move to a position G that offers her maximal winning expectations, which
corresponds to the following formulas, where with regard to doubling, the
unrepresented minimax optimization takes place as in the two-stone model:

choose roll d

Eblack(G) = Z P(d) max ( - Ewhite (@))‘
d

Euite (G) = S_P(d)  max  (~ By (G9)),
d

choose roll d

Epon (G*") =Y P(d)  max  (— Epoun(G?)).
d

choose roll d

To speed up the recursion it is recommended to analyze additional in-
termediate states beyond the positions G™". To this end, the dice results
are divided into their individual values, which are then played one after
the other. This is done formally by investigating positions in which white
maintains a “credit balance” of one to four dice values during the current
move.

Figure 31.11 shows the analysis of 207 x 207 = 42 849 endgame positions.
All positions are considered in which the expected number of throws to the
end for white and black, though for each without considering the opponent,
is at most 2.8, as it would he, for example, for a player with five pieces
on the fields 1-2-3-3-4 with an expectation for the number of throws of
2.7979. Such expectations for the number of throws can be easily calculated
recursively.

In the figure are shown four relative—depending on the throw expec-
tation for white, which is exhibited on the horizontal axis, though not
linearly—throw expectations for black:

e up to what point it is advantageous not to redouble;

8 According to the rules, in bearing off, for each of the two {or possibly four) dice
values, a piece must be moved such that the fewest possible dice points are lost. Oth-
erwise, the order of moving is arbitrary. Therefore, a player whose three stones occupy
fields 1, 3, and 5 who throws a 2-4 with the dice may first play the 2 to position 1-3-3
and then the 4 to 1-3. This offers him better chances on his next turn than first playing
the four and then the two, which would by necessity result in the position 1-1-1.
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Figure 31.11. Optimal redouble: greatest and least advantage for white in relation to
the expected number of throws.

e from what point a redouble can be advantageous;
e up to what point the acceptance of a redouble can be advantageous;

e from what point the acceptance of a redouble can be advantageous.

To keep things clear, for the first two points we have not shown the
corresponding results for the first double.

If the optimal redoubling behavior could be determined from the two
throw expectations alone, then the two curves above and the two below
could be replaced by a single curve for each pair. That such simple criteria
cannot be found can be seen from the right part of the figure. There we see
that the curve marked with points often runs below its partner curve, and
each place represents a pair of positions for which the optimal doubling
strategy and the roll expectations are not in their usual relationship; that
is, as in the case of the Jacoby paradox, an increase in the black roll expec-
tation can allow a more defensive redoubling behavior to become optimal.”
Since such occurrences are the exception, one can essentially characterize
every position with the two relatively simply calculated, or through simu-
lation approximated, roll expectations.’® To such an extent, Figure 31.11

9However, in contrast to the Jacoby paradox, the two positions differ in relation to
the placing of the white pieces; only the roll expectation must agree.

107sing statistical analysis, Jim Gillogly found the following asymptotic formula for
the roll expectation:

0.603 + 0.1014(p + 2a + a1 — b).

See the review article of Edward O. Thorp mentioned above.
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stands in direct analogy to Figure 31.10, where corresponding assertions
for the two-piece model can be made on the basis of the two numbers of
fields remaining to be traversed.

Further Mathematical Investigations into Backgammon

(1] Norman Zadeh, On doubling in tournament Backgammon, Management Sci-
ence 23, 1977, pp. 986-993.

2] E.O. Tuck, Simulation of bearing off and doubling in backgammon, The
Mathematical Scientist 6, 1981, pp. 43-61.

(3] Edward O. Thorp, End positions in backgammon, Gambling Times, 1978, Oc-
tober, November, December; reprinted in David N. L. Levy, Computer Games
I, New York 1988, pp. 44-61.

4] Edward Thorp, The Mathematics of Gambling, Hollywood 1984, pp. 83-100.
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Mastermind: Playing It Safe

What is the guickest way to crack the code in Mastermind? How many
turns are sufficient to decode an arbitrary four-place, siz-color code?

The commercially marketed game Mastermind was one of the most suc-
cessful games of the 1970s. Imitating the English pencil and paper game
“bulls and cows,” Mastermind was invented in 1973 by the Parisian Israeli
Marco Beirovitz, Within a few years, over ten million of the games were
sold.!

Mastermind is a two-person game of logic. At the start of the game,
one player chooses a color code; this is his sole active decision for the entire
game. In particular, he places a specified number n of colored sticks in a
row, hidden behind a shield from the opponent. There are & colors from
which to choose, and each color may be used more than once or not at all,
so that there are k™ possible codes. In the usual variants we have k = 6
andn=4or k=8 and n=>5.

The challenger attempts to break the secret code in the fewest possible
guesses, where a guess consists of a code, after which the first player supplies
the following information about the number of correct matches:

e first, the number of true “hits,” that is, the number of sticks whose
color and position are correct. For each such hit the encoder places a
black stick, but without revealing which colored sticks these relate to.

'David Pritchard, The Family Book of Games, Brockhampton Press 1983, pp. 1901f.;
Riidiger Thiele, Das grosse Spielevergniigen, Leipzig 1984, p. 210; Erwin Glonnegger,
Das Spiele-Buch, Munich 1988, p. 228. Practical tips for playing can be found in Leslie
H. Ault, The Official Mastermind Handbook, New York 1976.
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secret code
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2. second guess .

1. first guess @0
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answers

Figure 32.1. The first two guesses in a game of Mastermind.

e the second number is the number of colored sticks that would form
additional hits if they were permuted to different positions. The
encoder indicates this by placing a suitable number of white sticks.

Figure 32.1 should help to clarify how the game works.

In the game of Mastermind, logical conclusions must be drawn with
the utmost precision: which colors does one know appear in the secret
code? Which appear more than once? Which colors can be definitively
excluded? Can a particular colored stick be identified both as to color and
location? How should one frame one’s next guess so as to obtain as much
new information as possible? It is only with answers to such questions that
the large number of possible codes can be addressed, so that out of the
entirety of 6* = 1296 or even 8° = 32768 possible codes the correct one
can be found in a small number of turns.

We would like now to attempt to perfect our Mastermind playing strat-
egy. First, however, we must establish the boundary conditions and the
criteria to be optimized. These are closely connected to the category of
game to which Mastermind belongs. From a game-theoretic point of view
is it a one- or two-person game. Can Mastermind be formulated as a game
with perfect information? Three completely different approaches are pos-
sible. All three models agree in their determination of what it means to
win, namely, that for each guess, the decoder has to pay one unit to his
opponent:

e in the sense of a worst-case approach, one can seek a strategy that
guarantees the smallest possible bound on the number of moves to
crack any code. One might imagine that the encoder can cheat,
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changing the code in the middle of the game while keeping it in con-
formity with the answers already given. This means that the encoder
can answer arbitrarily, provided that his answers do not contradict
those already given. In this interpretation, Mastermind becomes a
nonrandom two-person game with perfect information, whose mini-
max value can be calculated.

e one can also interpret Mastermind as a one-person game, in which the
single decision of the encoder is replaced by a random process. Here
one might decree, though it is not necessary, that each code appear
with equal probability. With knowledge of the probability distrib-
ution employed, the guesser then seeks a strategy that minimizes
the expected number of turns. This is an average-case optimization,
which can be solved with the methods of probability theory. Minimax
techniques play no role here.

e a realistic Mastermind analysis may not, in contrast to the first two
approaches, overlook the role of the encoder and his strategic influ-
ence. Thus one considers Mastermind a two-person game, of course
without perfect information. One seeks strategic considerations such
as those known from poker: how do I size up my opponent? What
cuesses does he think I am least likely to make?

Common to all theoretic Mastermind analyses is that the deductive
elegance of the game is dispensed with. Instead of artfully drawing logical
deductions between the individual answers, one operates with a simple but
universal sorting mechanism. That is, in accord with the motto “quantity
instead of quality,” one does precisely what a player avoids at all cost: one
checks all possible codes to see whether they are in conformity with the
knowledge thus far obtained. Future moves are planned in this way, in that
one tests the set of remaining possible codes as to how it will grow smaller
under the planned guesses and the possible replies to them.

If one collects all k™ codes into a set Cj, then every intermediate state,
that is, every position, can be formally characterized by a subset C' C Cj
that contains all codes that are in accord with the knowledge thus far
obtained. In principle, Mastermind could now be investigated by “simply”
examining all subsets of codes. But there are too many of them! In the case
of the relatively small 6* Mastermind there are 2?9 subsets. One therefore
restricts one’s investigation to the subsets that actually correspond to a
position. One therefore defines sets of the form C'(g,a), where such a set
contains all codes that give the answer a to the question g. Thus every
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Mastermind position corresponds to a subset of the form

C = ﬂ Claqy, at).

=1
This set represents the situation in which s guesses q,...,gs have re-
ceived the replies ap,...,as. At the latest, when the intersection of all

remaining codes is reduced to a single element, the decoder can prepare his
last maove, for which he is guaranteed a complete set of black sticks.

For the decoder it is natural, even if not necessarily optimal, to make
a guess in such a way that the size of the resulting code subset is as small
as possible in the worst case. For 6 Mastermind this technique was first
investigated in 1976 by Donald Knuth.? Before we look at his results, let
us agree on a simpler notation, even though we have to sacrifice the visnal
aesthetic of the game: the colors are denoted by the numbers 1,2,...,k,
so that, for example, “3221" is a code of length 4. The replies consist of
two numbers bw, the numbers of black and white sticks displayed. In 6%
Mastermind there are 14 possible answers:

04,03,02,01,00; 13,12,11,10; 22,21,20; 30; 40.

We observe that the reply 31, that is, three black and one white stick, is
impossible.

Let us consider the first guess in a game of 6¢ Mastermind. Up to
symmetry, there are five possible opening moves: 1111, 1112, 1122, 1123,
and 1234. The left-hand portion of Table 32.1 shows how many codes
remain after the first move, depending on the answer.®

As one sees in Table 32.1, the guess 1122 guarantees in the worst case
the greatest reduction in the code set. At most 256 codes remain. “For-
tunately,” thus Knuth, one can continue this opening so that every code
is cracked in at most five moves, being confirmed with four black sticks.
Which code one should guess second is seen in the right-hand part of the
table. There are tabulated both the guess and the resulting reduction in
the number of codes, in the form of the number of codes that are still
possible after the second guess. Knuth'’s description of the entire strategy
takes two pages, and a program based on the above table should not be
too difficult to write. Furthermore, Knuth notes that his strategy is not
optimal in the average number of moves, but it is almost optimal.

?Donald E. Knuth, The computer as master mind, Journal of Recreational Mathe-
matics 9, 1976/77, pp. 1-6.

3The left part of the table can be found in Robert W, Irving, Towards an optimum
Mastermind strategy, Journal of Recreational Mathematics 11, 1978/79, 81-87.
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First Guess Second Guess
Answer | 1111 1112 1122 1123 1234 || after 1122
04 1 2 9 2211 done
03 16 44 136 1213 4
02 61 96 222 312 2344 18
01 308 256 276 152 2344 44
00 [ 625 256 256 81 16 3345 46
13 4 8
12 27 36 84 132 1213 7
11 156 208 230 252 1134 38
10 | 500 317 256 182 108 1344 44
22 3 4 5 6 1213 1
21 24 32 40 48 1223 6
20 150 123 114 105 96 1234 20
30 20 20 20 20 20 1223 5
40 1 1 1 1 1 done

Table 32.1. Codes remaining after the first two moves.

The proof that five guesses in 6* Mastermind always suffice is long,
but it is easily checked due to its constructive nature. But what about
the negation of this statement? Is there perhaps a better strategy that
would always work with four guesses? It is easy to see that this is not the
case. We make use of a relatively general investigation of sequential search
games, as given in 1979 by Viaud.* Viaud begins his estimates with the
number a of different answers that can result from a guess. In the case of
6% Mastermind, a = 14. Every additional guess divides the set €' of still
possible codes into o mutually disjoint subsets. One of these, namely, the
one with the correct code, contains a single element. Therefore, at least
one of the a — 1 remaining sets contains at least

C] -1
a—1

elements. If one applies this result repeatedly, then one sees that with more

than
__1m+1_1
(a—-1)m+---+(a—-1)2+(a—1)+1=%

codes one requires at least m + 2 guesses to be sure of breaking the code.
Therefore, with 184 or more codes one needs at least four guesses in 64

1D, Viaud, Une formalisation du jen de Mastermind, R.A.L.R.Q. Recherche
opérationnelle/Operations Research 13, 1979, pp. 307-321.
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Mastermind, since o = 14. Furthermore, we see from Table 32.1 that with
the first move in 6* Mastermind it is impossible to make a reduction to
fewer than 256 codes. Therefore, after the first move in 6* Mastermind one
needs at least an additional four, thus five altogether. Knuth's strategy is
therefore optimal in the sense of worst case.

Knuth’s worst-case optimal strategy is also very good if one is seeking
an average of very few moves to break the code, on the assumption, of
course, that the encoder selects a code randomly from among the 6% =
1296 possible codes. With Knuth'’s strategy the decoder needs on average
5804/1296 = 4.478 guesses. That this is not optimal was shown by Irving
in 1978, when he produced a strategy that reduced the expected number
of turns to 5662/1296 = 4.369. The first guess of type 1123 already differs
from Knuth’s strategy. From Table 32.1 one can see the plausibility of the
approach: although after the 1123 opening there could remain as many
as 276 codes in play, these codes are divided into 14 parts, and not the
mere 13 that arise from the play 1122. The sets of remaining codes are
therefore smaller on average. Like Knuth, Irving oriented his strategy
toward seemingly plausible criteria. As a measure he took the expected
number of remaining codes. For example, after the 1111 opening, this
average is

625 500 150 20 1
D29 625 + 2 % 500 + x 150 + %204+ —— x 1= 511.98.
1206 27 T 1206 <7 T 1206 Y T 1206 1206 :

A much smaller number, namely, 185.27, results when one starts with the
code 1123. Irving optimizes the second turn in the same way. The addi-
tional turns are so obvious that they can be investigated explicitly and so
can be directly optimized.

A few years after Irving, the Viennese statistician Neuwirth investi-
gated, among other things, strategies by which a player always guesses
only those codes that have not yet been excluded; that is, those for which
one may realistically hope that the reply will be a full set of black sticks.®
A danger arising from this limitation is that good strategies can be re-
jected. On the other hand, the remaining set of strategies can be more
easily dealt with. Despite this limitation, it turns out to be too difficult for
6* Mastermind using currently available computing power, and Neuwirth
thus had to restrict his attention to the 5% variant. Using a combination
of various approaches, however, he was able to improve a bit on Irving's
result, namely, to an average of 5656,/1296 = 4.364 guesses.

5Erich Neuwirth, Some strategies for Mastermind, Zeitschrift fiir Operations Re-
search 26, 1982, pp. B257-B273.
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Finally, the search for an optimal average-case strategy was concluded
in 1993 by Kenji Koyama and Tony Lai.® With their strategy, which was
found using complete optimization, the decoder succeeds in breaking the
code in 5625/1296 = 4.340 turns on average. In the worst case, how-
ever, six guesses are necessary. A small modification of the strategy lim-
its the number of guesses to at most five, but then the average grows to
5626/1296 = 4.341.

But what happens if the encoder does not behave as we have specified?
In order to ensure that the code is selected with equal probability from
among the 6 choices, the encoder refrains from taking an active role in
the game, even if all he can do is choose from among only five different
codes, up to symmetry. Would he not be better off leaving his opponent in
the greatest possible uncertainty? For such strategic uncertainty, such as
is found in poker, we have not yet developed a mathematical concept. We
will therefore return to Mastermind at a later point in this book.”

e
e

Black Box: Mastermind of Molecules

Great economic successes like Mastermind are frequently taken
as cause to offer similar “successor” games. The English game
Black Box was marketed in Germany under the names Ordo
and Logo, where it attained little success.® The game, invented
by Eric Solomon, contained elements of the games Mastermind
and Battleship, but it is nonetheless an interesting game in its
own right.

The game begins by a player “hiding” a “molecule” consisting
of four or five “atoms” on an 8 x 8 playing board. He does this
by simply making a cross in the relevant squares on a marked
piece of paper, which is of course hidden from the opponent.
As with Mastermind, the opponent is the only active player in
the game. This player obtains information by shooting “x-rays”
from the edge of the board, where such a ray can be reflected
or absorbed, or else it simply exits the playing field at another
point. This, and only this, information is given by the molecule

5Kenji Koyama, Tony W. Lai, An optimal Mastermind strategy, Journal of Recre-
ational Mathematics 25, 1993, pp. 251-256.

7See Chapter 44.

SWerner Fuchs, Spielefiihrer 1, Herford 1980, p. 101; David Pritchard, The Family
Book of Games, Brockhampton Press 1983, p. 195.
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builder. The following illustration shows on the left some paths
of x-rays, and on the right the conclusions that can be drawn;
in particular, it is certain that no atom is located on the squares
marked with a cross (x):

@ ©
® ® @|X|X|X[x|x|x|x|x|®
. ) X | X[ X[ x| x]|x|x|x|®
) ) <[ X[ X[ X[
O Oo[x
X | X X | X
oK ( ® @X|x|x X[ x|x|®
S X | X X | %
o) ) ® X
® O ® 0

In general, an x-ray is always absorbed if it would hit an atom
in the next square. Otherwise, the x-ray proceeds in a straight
line or, if it encounters one or more atoms in a neighboring
diagonal square, its path is altered. The direction of alteration
is determined by the concentric “force field” that every atom
emits, by which the angle of incidence is equal to the angle of
reflection. The x-ray is directly repelled by two atoms or by a
single atom on the boundary.

The playver who is guessing does not, of course, see the atoms
or the exact path of the x-rays. He is simply informed as to
the point of exit, whether and where it occurs. This occurs in
the form of the traces left on the boundary. In the diagram,
black circles indicate absorption, white circles reflection, and
the remainder pairs of entry and exit locations.

Black Box can be played on a checkerboard. Even better is a
reversi game, since one can use both sides of the playing pieces
to indicate proven or excluded locations of atoms.

Black Box can be analyzed mathematically in a manner sim-
ilar to that of Mastermind. That is, one sorts out the suec-
cessively refuted possible molecules. In comparison to Master-
mind, Black Box is much more complex, since the molecule
builder has greater scope for a larger number of asymmetric
constructions. There are some quite refined constructions that
can easily lead an uninitiated player to some very wrong con-
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clusions. An example is the x-ray denoted by a circled 2 in the
diagram, which is diverted several times. A further difference
from Mastermind is that some molecules cannot be determined
uniquely, in which case it suffices to produce an equivalent mole-
cule.

Further Mathematical Publications on Mastermind

[1] V. Chvatal, Mastermind, Combinatorica 3, 1983, pp. 325-329.

[2] D. Viaud, Une stratégie générale pour jouer au Master-mind,
R.A.LLR.O. Recherche opérationnelle/Operations Research 21, 1987, 87-100.

[3] Merill M. Flood, Sequential search strategies with Mastermind variants, Jour-
nal of Recreational Mathematics 20, 1988, pp. 105-126, 168-181.

[4] H.P. Wynn, A. A. Zhigljavsky, J. H. O’Geran, Search methods and observer
logics, Fifth Purdue International Symposium on Statistical Decision Theory
and Related Topics, 1992, pp. 533-535.

[5] J.H. O’Geran, H.P. Wynn, A. A. Zhigljavsky, Mastermind as a test-bed for
search algorithms, Chance 6, 1993, pp. 31-37.

In the articles by Chvatal and Viaud, general strategies for k" Mastermind
are investigated, including the version without repetition of colors. In the two
articles of Wynn et al., general search strategies are discussed with reference to
Mastermind.
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Rock—Paper—Scissors:
The Enemy’s Unknown Plan

If two persons wish to decide who is to pick up the check at a restaurant, one
option available is to play rock—paper—scissors. In this game the two players
have the same moves and the same odds of winning. Unlike symmetric two-
person games with perfect information, one cannot know in advance what
move will lead to disaster. What is one to do?

We have already analyzed the first two among the three causes of uncer-
tainty in games mentioned in the preface, namely, chance, combinatorial
explosion, and differing levels of information. We have not yet explored the
issue of the uncertainty presented to a player who does not know everything
that his opponent knows. We therefore would like to look at games without
perfect information, also known as games with imperfect information.

Rock-paper—scissors is a game without random influences whose com-
binatorial complexity is trivial. The entire uncertainty of the game resides
in the lack of perfect information, that is, in the fact that the two players
must move simultaneously, each of them without knowledge of what move
the opponent has chosen. Each of the three possible moves can lead to a
loss: the rock is captured by the paper, the scissors by the rock, and the
paper by the scissors. The only way of being sure of avoiding defeat is to be
able to guess in advance the opponent’s plan. Then, of course, one would
always have a winning move.

An evaluation of the opponent’s psychology can be very useful in games
like this one; one need think only of poker, which one knows about, if not
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from first-hand experience, then from any number of Hollywood films. Does
the opponent really have as good a hand as it seems? Or is he bluffing?
That is, can one believe that an opponent would have made his previous
bets with a worse hand than the one that we possess? An important role is
played by what has happened already. How risk-averse does our opponent
seem? How poker-faced? How has the opponent played in previous games?
The chains of tactical reasoning that even a simple game can unleash can
be sampled in Edgar Allan Poe’s 1845 story, “The Purloined Letter.” In
this story a schoolboy is depicted who achieves great success in the game
“even or odd,” which is similar to rock—paper—scissors:

This game is simple, and is played with marbles. One player
holds in his hand a number of these toys, and demands of an-
other whether that number is “even or odd.” If the guess is
right, the guesser wins one; if wrong, he loses one. The boy
to whom I allude won all the marbles of the school. Of course
he had some principle of guessing: and this lay in mere obser-
vation and a measurement of the astuteness of his opponents.
For example, an arrant simpleton is his opponent, and, hold-
ing up his closed hand, asks, “Are they even or odd?” Our
schoolboy replies, “odd,” and loses; but upon the second trial
he wins, for he then says to himself, “The simpleton had them
even upon the first trial, and his amount of cunning is just
sufficient to make him have them odd upon the second; I will
therefore guess odd”; he guesses odd, and wins. Now, with a
simpleton a degree above the first, he would have reasoned thus:
“This fellow finds that in the first instance I guessed odd, and,
in the second, he will propose to himself upon the first impulse,
a simple variation from even to odd, as did the first simpleton;
but then a second thought will suggest that this is too simple
a variation, and finally he will decide upon putting it even as
before. I will therefore guess even.” He guesses even, and wins.
Now this mode of reasoning in the schoolboy, whom his fellows
termed “lucky”—what, in its last analysis, is it?

The procedure by which the successful schoolboy assuredly places his
opponents in various categories of simpleton to achieve victory must
remain—as is typical with Poe—a mystery. There seems to be no way
of transforming such a process into a mathematically formulatable algo-
rithm. Or is there? Let us consider. In “even or odd” there exists, as with
rock—paper—scissors, a certain symmetry among the various moves; that
is, there are no hetter or worse moves. In contrast to rock—paper—scissors,
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however, the game “even or odd” is not symmetric, since a draw does not
result if the two players choose the same strategy.

Much greater importance must be attached to the strategy by which a
move is chosen than to the move itself. Poe’s schoolboy takes the measure
of his opponent and considers as well his actions in previous games. But
is there an opposing strategy to counter this successful play? Or is one
without defense against such a brilliant player, with no choice save that
between ruin and quitting the game?

In fact, there is a simple method of thwarting the psychological genius.
Instead of trying to figure out which of our thoughts our opponent can
guess, we let lady luck choose our moves for us. For example, in “even or
odd” we can cut a shuffled pack of cards and if the card is red, take one
marble, and if black, two. Of course, we must keep the color of the cards
hidden from the opponent, but we do not have to hide our intention of
choosing our move according to this procedure.

What is achieved with this trick of leaving the decision to chance? Our
opponent can psychologize as long and as cleverly as he wishes, but it will
help him not at all, because when all is said and done, he is playing a pure
game of chance. However he chooses his moves, he will win a marble with
probability 1/2 and will therefore break even in the long run. Our trick of
randomization has met all the requirements of defensive play, though at the
cost of having no advantage ourselves when playing against an opponent
whom we can see through, since our strategy takes no information about
the opponent into account.

To transfer this technique to other games, we will describe it more
formally. We will use the normal form that we met in Chapter 18. There
we saw that every two-person zero-sum game can be represented by a table,
though it might be a very large table indeed. Namely, if a player decides
his entire strategy for a game in advance, then the game is reduced to
one gigantic double move, and the course of the game becomes equivalent
to that of rock—paper—scissors or “even or odd.” In particular, before the
game begins, a player must decide how he will respond to every possible
game configuration that may present itself. This may prove completely
unrealistic in practice. However, for the theory all that is important is
that the game remain substantially unchanged by such a modification. Von
Neumann and Morgenstern (1902-1977), the founders of game theory, have
this to say on the subject:!

Imagine now that each player ... instead of making each deci-
sion as the necessity for it arises, makes up his mind in advance

1 John von Neumann, Qskar Morgenstern, Theory of Games and Economic Behavior,
Princeton 1944.
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for all possible contingencies, i.e., that the player ...begins to
play with a complete plan, a plan which specifies what choices
he will make in every possible situation, for every possible ac-
tual information which he may possess at that moment ... We
call such a plan a strategy.

Observe that if we require each player to start the game with
a complete plan of this kind, i.e., with a strategy, we by no
means restrict his freedom of action. In particular, we do not
thereby force him to make decisions on the hasis of less infor-
mation than there would be available for him in each particular
instance in an actual play. This is because the strategy is sup-
posed to specify every particular decision only [in dependence
on] .. .actual information which would be available for this pur-
pose in an actual play. The only extra burden our assumption
puts on the player is the intellectual one to be prepared with a
rule of behavior for all eventualities—also he is to go through
one play only. But his is an innocuous assumption within the
confines of a mathematical analysis.

In contrast to most other games, in which the normal form is of purely
theoretical interest due to the combinatorial explosion, the normal forms
of rock-paper—scissors and “even or odd” are extremely simple. Let the
player trying to guess his opponent’s move take the role of black. Then the
entries of the normal form, as shown in Table 33.1, correspond to black’s
score against his opponent white.

The game possesses no saddle point, which, by Zermelo's theorem, al-
ways exists for games with perfect information. Thus each player must
strive to keep his or her strategy secret from the opponent. A player who
knows his opponent’s strategy can always win. From the point of view
of white's score, in the terminology of maximin and minimax values as
described in Chapter 18, this has the following significance:

e the maximin value, which is the greatest value that white can be sure
of achieving through her own efforts, is equal to —1.

Black Guesses

Odd Even

1 2

White Odd 1 -1 1
Chooses Even 2 1 -1

Table 33.1. The normal form of “even or odd"”: white chooses, black guesses.
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e the minimax value, which is the lowest value to which black can be
sure of limiting white's score, is equal to +1.

Since each player can force his or her value independent of the opposing
stragegy, this value is not worsened if the opponent chooses his strategy
via a random process. On the other hand, it is entirely possible to improve
one’s own value with this trick. Let us see what happens if white does not
choose a fixed strategy but decides instead to make her choice randomly
in the proportion 1 : 1. The game proceeds randomly, depending on the
opponent’s strategy. That is, as with a pure game of chance there is no
fixed score but only a probability distribution for the score, where in the
mathematical analysis we treat the expected value like a fixed score in
that amount. One can thus formulate the random selection of the strategy
actually used as a new strategy, called a mized strategy, and we can thus
extend the normal form to include the corresponding game values for white:

Black Guesses

Odd Even

1 2

White Odd 1 -1 1
Chooses Even 2 1 -1
1:1 Random Choice 3 0 0

Of course, white could decide on another weighting of the two basic
strategies, usually called pure strategies. If the strategy “odd” is chosen
with probability p, and the strategy “even” with probability ¢ = 1 — p,
then the following normal form results:

Black Guesses

Odd Even

1 2

White Odd 1 -1 1
Chooses Even 2 1 -1
p:q Random Choice 3 [1-2p 2p-—1

In this normal form as well, the additional game values are expectations,
which again are treated like fixed scores. If white decides on a mixed
strategy in the relation p : ¢, then her winning expectationis 1—2p or 2p—1,
depending on how black moves. Except for the case p = 1/2, one of the two
values is always negative, so that white must fear a negative expectation
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should black choose a winning strategy. This makes it clear that white
can defend herself against negative expectations only by choosing a mixed
strategy in the proportion 1 : 1.

Of course, black can also choose mixed strategies by making his move
according to an established probability distribution. However, black will
not succeed in attaining a positive expectation against white’s 1 : 1 mixed
strategy. If one assumes no fixed strategy in advance for white, then the
1 : 1 strategy is black’s only chance of avoiding the risk of an expected loss.

The 1 : 1 mixed strategies thus form a saddle point in the game ex-
tended to mixed strategies, as is guaranteed for every two-person zero-sum
game with perfect information even in the form of a combination of two
pure strategies. Minimax and maximin values thus agree in the extended
game and are equal to zero. The strategies themselves are called minimax
strategies or simply optimal strategies. Here the word “optimal” is applied
in the sense of the worst case, that is, the best possible defense in which
the total risk is minimized:

Black Guesses
Odd Even | 1:1 Random

1 2 3

White Odd 1 -1 1 0
Chooses Even 2 1 —1 0
1:1 Random Choice 3 0 0 0

As we have already noted, once found, the value of a saddle point is not
altered by additional mixed strategies. To that extent, a game of “even or
odd” extended to mixed strategies has attained a certain stability, such as
we have seen with games with perfect information. Each of the two players
can make his or her mixed strategy, that is, the proportion of choices,
known in advance to the opponent without fear of being at a disadvantage.
From this point of view, the difference between such a game and chess is
only in the influence of chance; that is, as with backgammon or memory, all
the propositions apply to the winning expectations, and not to the actual
results of an individual game.

In the game we are considering the saddle point is unique. As we have
seen in white's case, every mixed proportion other than 1 : 1 represents a
risk of loss for the player if the opponent counters appropriately. A careful
player will not trust opponent error in formulating a strategy, but as with
chess will put up the hest possible defense.

In the game rock—paper—scissors, a player can also use a mixed strategy
to overcome any psychological advantage that the opponent may possess.
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Black Chooses
Paper Rock Scissors

1 2 3

White Paper 1 0 1 -1
Chooses Rock 2 -1 0 1
Scissors 3 1 -1 0

Table 33.2. Normal form of the game rock—paper—scissors.

As expected, the double symmetry of the game, namely, that between the
two players and among the three possible moves, can be seen in the result:

e in the original game, in which only pure strategies are allowed, the
maximin value for white is —1, and the minimax value is 1.

e in the game extended to mixed strategies, the maximin and minimax
values are both zero.

e the optimal strategies choose each of the three possible maoves equiprob-
ably, with probability 1/3.

All three of these statements can be verified at once with a look at the
normal form displayed in Table 33.2.

The game rock—paper—scissors was first investigated formally from this
point of view in 1924 by Emile Borel,2 one of the founders of modern
probability theory,® who at that time was also a member of the French
parliament and indeed, one year later, was briefly the naval minister in the
cabinet of his mathematician colleague Paul Painlevé (1863-1933). Borel
was the first to discover, in 1921, the advantage of mixed strategies and
also the first to recognize the normal forms as a universal description of
games.? If white and black mix their strategies with probabilities p, g,
and u, v, w, respectively, then white obtains a winning expectation in rock—
paper—scissors of

(r—qu+(p—rjv+(g-pw.

This formula shows us that white is protected against a negative expec-

tation only if the three numbers » — g, p — r, and g — p are equal to zero.

2Emile Borel, Sur les jeux ou interviennent le hasard et I'habileté des jouers, in:
Théorie des Probabilités, Paris 1924; English translation: On games that involve chance
and the skill of the players, Fconometrica 21, 1953, pp. 101-127.

3See also Chapter 5.

1Emile Borel, La théorie du jeu et les équations intégrales a4 noyau symétrique,
Comptes Rendus de "Académie des Sciences 173, 1921, pp. 1304-1308; English tran-
sation: The theory of play and integral equations with skew symmetric kernels, Econo-
metrica 21, 1953, pp. 97-100.
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Otherwise, among the three numbers, whose sum is zero, there must be at
least one that is negative, so that black can force a negative expectation
on white with a well-targeted pure strategy.

Needless to say, Borel’s true interest was not the game rock—paper—
scissors. Among other things, he was interested in the question whether in
baccarat it is advisable to draw another card from the value 5.° He was
looking for a general method whereby a player in a symmetric two-person
Zero-sum game can prevent a negative expe-:l;atit:)n:6

Let us consider a game in which the score depends both on
chance and the skill of the players. Let us confine ourselves
to the case of two players, A and B, and a game symmetric
in the sense that if A and B adopt the same method of play,
then their chances are equal. One may propose to investigate
whether it is possible to determine a method of play better
than all others, i.e., one which gives the player who adopts it a
superiority over the player who does not adopt it. Let us first
define what we should understand by a method of play. It is a
code that determines for every possible circumstance (supposed
finite in number) exactly what the person should do.

The restriction to symmeiric games is thus of great practical utility:

e on the one hand, one knows that neither player can be assured of a
positive expectation. If one were to find a mixed strategy that could
guarantee a player an expectation of at least 0, then such a strategy
must be optimal. If the opponent employs the same strategy, then
these two strategies combine to form a saddle point at which both
players have expectation 0.

e on the other hand, this restriction causes two possible problems. Most
games are asymmetric, even if due only to who moves first. Nonethe-
less, every game can be seen as part of a symmetric game. Namely,

»n

5In the second part of the article, “Sur les jeux ...,” cited above, Borel refers to
Joseph Bertrand, who mentions this question in his textbook on probability theory,
Calcul des probabilités. Bertrand’'s book first appeared in 1899. The study of baccarat
is described in Chapter II, 33, Probléeme XIX (second edition, Paris 1907, reprinted New
York 1972). Bertrand compares the options for both the player and the bank, assuming
that each knows the other’s strategy. We will return to Baccarat in Chapter 42.

5Tn his 1921 work mentioned above, Borel restricts his attention to games that can
only be simply won or lost (score of +1 or —1). It is within this limitation that the
winning probabilities are investigated.
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one simply plays, as Borel noted,” two games with roles interchanged.
It is even simpler to play a single game and draw lots to determine
who gets which role.

Borel's first success was with symmetric games in which each player
possesses three strategies, and then in 1924 with games of five strategies.
In particular, he began with an arbitrary 3 x 3 game, which always has a
normal form of the following type:

Black Chooses

1 2 3

White 1 0 a —b
Chooses 2 | —a 0 c
3 b —c 0

Borel constructed a probability distribution depending on the arbitrary
values a, b, ¢ with which white can mix her strategies in such a way that she
is protected from a negative expectation. That is, if white mixes her three
strategies with probabilities p, ¢, r, then the winning expectations against
black must be at least 0. This corresponds to the conditions

—aq + br = 0,
ap —cr = 0,
—bp + ¢q = 0.

Of course, the conditions p = 0, ¢ = 0, r = 0, and p+ g+ r = 1 must be
satisfied as well.

To arrive at the desired probabilities we must investigate a number of
cases, depending on the signs of a, b, and e. If none of the numbers a, b, ¢ is
negative and at least one of them nonzero, then white can use the following
probabilities:

e b a
a+b+e’ q

p = = r=—
p a+b+c a+b+e

There does not appear to be a generalization of the procedure designed
for the special situation of 3 x 3 games, and Borel became convinced that

"In a footnote by Emile Borel, Sur les systémes de formes linéaires a déterminant
symétrique gauche et la théorie générale du jeu, Comptes Rendus de ["Académie des
Sciences 184, 1927, pp. 52-53; English translation: On systems of linear forms of
skew symmetric determinant and the general theory of play, Econometrica 21, 1953,
pp. 116-117. We will discuss in detail the construction of symmetric versions of games
in Chapter 36.
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such a mixed strategy does not exist for every symmetric game. Yet a game
in which no player can be assured of a nonnegative expectation exhibits a
rather specific nature. For in such games, in contrast to a game with perfect
information or one of the 3 x 3 games that we have looked at like rock—
paper—scissors, it is necessary for a successful game to make a psychological
evaluation of the opponent. Borel formulated the consequences thus in
1921:

Since this is the situation, whatever variety is introduced by A
into his play, once the variety is defined, it will be enough for B
to know it in order that he may vary his play in such a manner as
to have an advantage aver A. The reciprocal is also true, whence
we should conclude that the calculation of probabilities can
serve only to facilitate elimination of bad manners of playing
... for the rest, the art of play depends on psychology and not
on mathematics.

Has mathematics, then, reached its limit on simple two-person zero-
sum games? Or can a saddle point of mixed strategies be found for every
two-person zero-sum game? If not, then how far can the difference between
the minimax and maximin values be reduced using mixed strategies? We
will have more to say about these questions in the next chapter.
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Minimax Versus Psychology:
Even in Poker?

Two players play two games of poker, where each player gets to open in
one of the games. Can a player vary his strategy randomly in such a way
as to prevent a loss on average?

With this question we make concrete the suite of problems posed at the
end of the previous chapter. We are not going to get into the details of
poker, and thus we are not looking for an explicit strategy. Rather, we
would like to begin with an investigation of the question whether mixed
strategies are worthwhile. Can a negative expectation be prevented in our
poker game, independent of psychological factors, just as in two games of
chess with alternating colors a player can at least theoretically break even?
That is, can one, depending on the state of one's own information, which
includes in particular one's own hand and the previous bids, vary one’s
manner of play randomly in such a way that guarantees an expectation of
at least zero?

Poker offers us a typical example, since the property of imperfect infor-
mation characterizes the game. Each player knows only his own cards and
attempts to draw conclusions about the opponents’ play: is the opponent’s
hand really as good as it would appear based on his previous bids? Or is
one’s own hand good enough to raise the bet, on the assumption that it is
the best hand in the game?

Only shortly after Borel's work, and without knowing his pessimistic
prognosis, a much younger mathematician set to work on such problems.

365
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It was 1926, and the young Hungarian mathematician John von Neumann
had just arrived in Goéttingen, at the time one of the centers of world
mathematics, after obtaining his degree in mathematics in Budapest and a
diploma in chemistry from Zurich. One of von Neumann’s interests, though
certainly not the main one, was the mathematical aspects of games, and
with a serious reason: while Borel, in 1921, had drawn analogies between
games and both economics and military tactics, von Neumann saw games
as a universal model for decision processes:!

And finally, an event with given external conditions and given
actors (assuming absolute free will for the latter) can be seen
as a parlor game if one views its effects on the persons involved.

The question he posed about successful play in such games thus is of
great importance, since:

There is scarcely a question of daily life in which this problem
does not play a role.

Von Neumann’s researches, which include greatly simplified models of
poker, led to a lecture on 7 December 1926 before the Gottingen Math-
ematical Society, whose content was published less than two years later.?
There he began by restricting the objects under investigation with a for-
mal definition of a game. Like Borel, he stated that games can always be
transformed in such a way that every player has a single move on which
to decide, and to do so at the same time as all the other players. This
form of a game, namely, the normal form, becomes the starting point for
his further investigations.

For von Neumann the number of players is irrelevant, though he assumes
the game to be of zero sum. He begins by investigating two-person games,
and how the winning prospects of the two players, 57 and S, are reflected
in the data of the normal form, and he thus recognizes the significance of
the maximin and minimax values. The maximin value is, according to von
Neumann,

The best result that S, can attain if Sy sees through him com-
pletely ... (Due to the game rules, Sy was not allowed to know

! John von Neumann, On the Theory of Games of Strategy, in: Contributions to the
Theory of Games IV, Annals of Mathematics Studies 40, Princeton 1959; Werke: Band
IV, pp. 1-26.

2John von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen
100, 1928, pp. 205-320; Werke: Band IV, pp. 1-26, particularly in reference to the work
of Borel that von Neumann became aware of only later: J. v. Neumann, Sur la théorie
des jeur, Comptes Rendus de ['"Académie des Sciences 186, 1928, pp. 1689-1691.
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what S; will play, and so he must infer this by other means.
This is what we mean by “see through.”)

Analogously, the minimax value is

The best result that S, can attain if he has seen through S;. If
both these numbers are equal, this means that it doesn’t matter
which of the two players is the better psychologist; the game is
so insensitive that the result is always the same ....

The difference in the two values ... means that of two players
S, and S5, both of them cannot be simultaneously the cleverer
one.

Already in the next sentence von Neumann announces his decisive re-
sult:

However, despite the existence of a trick, it is possible to force
the equality of the two above-mentioned numbers.

By “trick” von Neumann means that the players choose their rules
of behavior in an actual game randomly. Thus von Neumann has the
same idea as Borel, except that he carries the approach of mixed strategies
through to the end by showing that in every such game, extended as to the
possibilities for moving, the maximin and minimax values agree.® Thanks
to this minimax theorem, which holds for every finite two-person zero-sum
game, no player need fear that his opponent might see through his strategic
plans, on the assumption that the player has mixed his strategies according
to the minimax principle, which is always possible. In relation to the poker
game that we introduced at the start of this chapter, there thus exists a
mixed strategy that—however it might look in detail—prevents a negative
expectation.

Von Neumann’s work received little attention at first.? His results
obtained wider recognition only when in 1944, von Neumann published,

3The significance of Borel’s work on the development of game theory was the sub-
ject of a 1953 controversy initiated by the the French mathematician Fréchet: Maurice
Fréchet, Emile Borel, initiator of the theory of psychological games and its applications,
Econometrica 21, 1953, pp. 95-96; Maurice Fréchet, Commentary on the three notes of
Emile Borel, ibid., pp. 118-124; J. von Neumann, Communications on the Borel notes,
ibid., pp. 124-125.

4A notable exception is the short work by René de Possel, Sur la théorie
mathématique des jeur de hasard et de réflezion, Paris 1936, reprinted in Hevre Moulin,
Fondation de la théorie des jeur, Paris 1979, where in just under 40 pages the various
aspects of games are explained in accessible prose. In reference to Borel, Possel distin-
guishes games of chance, reasoning, and trickery, where “A game is sensitive to trickery
if a player can gain an advantage if he knows his opponent’s thoughts.” All three types
of games and game influences are explored from a mathematical point of view. Von
Neumann's minimax theorem is cited with respect to games of trickery.
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together with the economist Oskar Morgenstern, who, by the way, was
the illegitimate grandson of the German Kaiser Friedrich III, an exten-
sive monograph called Theory of Games and Economic Behavior.® This
publication represented the birth of mathematical game theory, although
significant aspects of the theory had by then been known for 18 years.

Von Neumann’s original proof of the minimax theorem is a pure exis-
tence proof, and thus does not show how to calculate the relevant strate-
gies. Moreover, the proof, though rather elementary in its argumentation,
is comparatively lengthy. The proof can be greatly shortened if one makes
use of the Brouwer fixed-point theorem.® The mathematical content of
the theorem, unknown as much to von Neumann as to Borel, had already
been discovered and proved several times, the first in 1902 by Julius Farkas
(1847-1930) in the form of an abstract theorem on inequalities.” This
purely algebraic formulation with inequalities makes possible a geometric
interpretation, in which convex sets play a role.® A set of points is said to
be convex if for every pair of points in the set, the line connecting them also
belongs to the set (see “The Idea of the Proof of the Minimax Theorem”).
Only later, at the end of the 1940s, was the scope of the minimax theo-
rem again extended, this time as a result about solutions of optimization
problems. We shall return later to this theme.

The minimax theorem will form the foundation of our further mathe-
matical analysis of two-person zero-sum games, much as Zermelo’s theorem
did for games with perfect information. We shall investigate games in which
explicit results can be calculated as well as those for which only qualita-
tive assertions can be made. We begin with some foundational statements
about the nature of two-person zero-sum games that can be formulated
directly from the two above-mentioned theorems:

5For the history of this monograph and the careers of the authors, see H. W. Kuhn,
John von Neumann’s work in the theory of games and mathematical economics, Bulletin
of the American Mathematical Society 64, 1958, pp. 100-122, special edition on the
death of John von Neumann; William Poundstone, Prisoner’s Dilemma, New York
1992; Urs Rellstab, Okonomie und Spiele: Die Entstehungsgeschichte der Spieltheorie
aus dem Blickwinkel des Okonomen Oskar Morgenstern, Chur 1992.

5This theorem was mentioned in one of the notes to Chapter 19; see also Tinne Hoff
Kjeldsen, John von Neumann’s conception of the minimax theorem: A journey through
different mathematical contexts, Archive for History of Eract Sciences 56, 2001,
pp. 39-68.

7See Tinne Hoff Kjeldsen, Different motivations and goals in the historical devel-
opment of the theory of systems of linear inequalities, Archive for History of Ezact
Sciences 56, 2002, pp. 469-538.

8The first proof of the minimax theorem based on convex sets was found in the mid
1930s by Jean Ville, and was first published in E. Borel, Traité du calcul des probabilités
et de ses applications, Tome IV, Fascicule II, Applications aux jeux de hasard, Paris
1938, pp. 105-113.
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e games without randomness and with perfect information are purely
combinatorial. Like chess and go, they are completely determined.
Each of the two players can force a result that corresponds to the
game value.

e games with elements of chance with perfect information are deter-
minable only up to expectation. Each player can optimize his or her
play so that on average, independent of the opponent’s strategy, a
result is guaranteed that reflects the game value. Otherwise, nothing
can be said about the results of individual games.

e without perfect information, players are often compelled to vary their
strategies randomly. Even if the rules contain no random elements,
the course of the game is not necessarily deterministic. As with games
of chance, a player is guaranteed a result corresponding to the game
value only up to the expectation: in individual games, the result can
be much less favorable. In von Neumann’s words:?

In spite of . .. chance (via the introduction of expectations. . . )
being eliminated from the games considered, it has reap-
peared on its own: Even if the rules of the game contain no
elements of chance. ..it is nonetheless absolutely necessary
to introduce the elements of chance in specifying how the
players are to act. The dependence on chance is so deeply
embedded in the nature of the game (if not in the nature
of the world) that it is not at all necessary to introduce it
artificially in the rules: Even if there is no trace of it in the
rules of the game, it establishes itself of its own accord.

-
-
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The Idea of the Proof of the Minimax Theorem

In the following discussion we shall restrict our attention to the
case that white has exactly two strategies, since then the con-
tent of the minimax theorem can be presented geometrically in
the plane. Nonetheless, the construction that arises is univer-
sally applicable and works in the same way when white has more

9In John von Neumann, On the Theory of Games of Strategy, in: Contributions to
the Theory of Games IV, Annals of Mathematics Studies 40, Princeton 1959; Werke:
Band IV, pp. 1-26.
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than two strategies, though in that case, a higher-dimensional
representation is necessary. The geometrically supported argu-
ments that we use can be proved in complete generality using
standard techniques of analytic geometry.

‘We first prove the following: either black can restrict white to
a score of at most 0 using a mixed strategy, or white possesses
a strategy by means of which she can ensure herself a positive
score.

‘We will indicate the required construction using two examples
with the following normal forms:

Black
1 2 3 4
White 1 1 -1 1 2
2| -2 1 0 1
and
Black
1 2 3 4
White 1 2 -1 1
21 -1 1 0 1

First the scores that white can obtain from black using the vari-
ous strategies are entered into a rectangular coordinate system:
each pure strategy of black yields a point whose first coordi-
nate equals white’s score if she chooses her first strategy, and
whose second coordinate is the analogue for the case that white
chooses her second strategy. Black’s mixed strategies can also
be represented in this way. They “center” the pure strategies,
and indeed, in the same way whether from a geometric point
of view or that of the quantitative result. For example, a 1:1
mixed strategy lies geometrically at the midpoint between the
two pure strategies whose mixture was used. For our two ex-
amples, the totals of all mixed strategies are represented by
the triangles. As one can see, the region is “anchored” on the
points that can be specified by pure strategies. Note also that
for every two points in the region, the line connecting them is
also contained in the region. Thus beginning with the points
that represent the pure strategies, one successively obtains the
entire region that represents the mixed strategies:
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With respect to the negative third quadrant of the coordinate
system, which is shaded in the diagrams, we see that there are
two possible cases. We shall see that this division into cases
corresponds to the two alternatives presented at the beginning
of this sidebar:

e in the case represented in the left-hand diagram, black can

find a mixed strategy that prevents white from attaining a
positive expectation. Here black can use any mixed strat-
egy corresponding to the region of overlap with the third
quadrant.

in the case depicted in the right-hand diagram, in which
there is no overlap, one seeks the shortest line connecting
the two regions. Such a line always exists, since asymptotic
situations, such as one knows from hyperbolas and their
axes, are excluded due to the limited size of the triangular
strategic region. When a line with minimal distance is
found—it need not begin at the origin—then its direction
indicates the desired strategy for white:

— first of all, no coordinate of the direction vector can be
negative, since a shorter line could then be found by
translating the endpoint in the third quadrant. Fur-
thermore, the vector found has at least one positive
coordinate.

— thus the relationship between the coordinates can be
interpreted as a relation by means of which white
can mix her strategies. The vector of probabilities,
normed to length 1, is shown in the figure as a heavy
line and marked with x.
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— the score that white can achieve with the strategy x
has a geometric interpretation: as with white’s pure
strategies, the score is equal to the corresponding coor-
dinate of the geometrically represented black strategy,
thus in the general case one forms a scalar product.
And this product is equal to the length that results
from the projection onto the line that was found, as
is shown, for example, in the diagram for two points
that correspond to a black strategy. On one side of the
dotted line, thus in particular for the entire triangular
region, the result is always positive.

With this proof the minimax theorem for symmetric games is
clear: since for symmetric games the second alternative can
never arise, for such games the first alternative must always
obtain. That is, black can use a mixed strategy to limit white
to a maximum score of 0. The same holds, of course, for white.

To be able to prove the minimax theorem for asymmetric games,
one introduces a handicap in the form of a fee to be paid whose
value is varied. If one also allows negative fees, then one may al-
ways assume that white pays the fee to black. The game is now
investigated for all fee levels from the point of view of the proved
alternative: when does one hold, and when the other? Here the
two alternatives, which basically say nothing but that white is
ahead or that the opposite is true, divide the entire number
line into two halves. The number that divides the two halves
is the minimax value of the game. White can assure herself of
every value smaller than this number as winning expectation.
Likewise, black can limit white’s expectation to every amount
that is larger. By passing to the limit, one obtains the minimax
theorem.

J—
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Bluffing in Poker: Can It Be
Done Without Psychology?

The success of a good poker player rests in large measure on the ability to
bluff. But on what basis does one decide to bluff ? Does successful bluffing
depend on an astute psychological estimation of one’s opponent? Or is
bluffing the expression of an objective mathematical optimality that allows
a player to parry an opponent’s strategic options according to the laws of
the minimax theorem?

Von Neumann's minimax theorem guarantees optimal strategies to every
player of a two-person zero-sum game. Thus one should he able—at least
in theory—to withstand the cunning tactics of the most hardened poker
face. However, the defensive hasis of optimal strategies has its drawbacks,
since no specific advantage can be drawn from the weaknesses of a player
who is clearly not playing up to snuff. Such advantages accrue to the player
who can realistically assess his opponent.

What form the minimax optimality takes in a particular case and to
what extent it agrees with empirical experience in game playing is an open
question. With the question posed at the beginning of this chapter we
have particularized the problem to poker and the technique of bluff: should
one bluff only when one believes it possible to fool an inexperienced and
therefore insufficiently or excessively cautious player? Or is bluff used on
occasion even when no extra information about the opponent is available?

374
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Poker is played in a number of variants.! What all these variants
have in common is that every player places bets that he or she holds
the best cards. Only those who remain in the game throughout the en-
tire bidding process can participate in the showdown, where the hands
of those remaining players are compared. If all the players except one
fold, then that player wins the hand without a showdown. It is clear
that good hands can support high bets more than bad ones can. But it
would make little sense to use a strict formula for placing bets based on
the strength of one's hand, because that would allow the opponent to know
your cards. John von Neumann and Oskar Morgenstern have this to say on
the subject:2

The point in all this is that a player with a strong hand is
likely to make high bids—and numerous overbids—since he
has good reason to expect that he will win. Consequently a
player who has made a high bhid, or overbid, may be assumed
by his opponent—a posteriori'—to have a strong hand. This
may provide the opponent with a motive for “Passing.” How-
ever, since in the case of “Passing” the hands are not compared,
even a player with a weak hand may occasionally obtain a gain
against a stronger opponent by creating the (false) impression
of strength by a high bid, or overbid—thus conceivably inducing
his opponent to pass.

This maneuver is known as “Bluffing.” It is unquestionably
practiced by all experienced players. Whether the above is its
real motivation may be doubted; actually a second interpreta-
tion is conceivable. That is, if a player is known to bid high
only when his hand is strong, his opponent is likely to pass in
such cases. The player will, therefore, not be able to collect on
high bids, or on numerous overbids, in just those cases where his
actual strength gives him the opportunity. Hence it is desirable
for him to create uncertainty in his opponent’s mind as to this
correlation—i.e., to make it known that he does occasionally
bid high on a weak hand.

1Claus D. Group, Alles iiber Pokern, Niedernhausen 1987; Kay Uwe Katira, Poker
und andere Kartenspiele, Ravensburg 1979; John Scarne, Complete Guide to Gambling,
New York 1974, pp. 670-701. Historical, strategic, and mathematical aspects of poker
are discussed in John McDonald, Poker: an American game, Fortune 37, March 1948,
pp. 128-131, 181-187. A supplement to that article can be found in John McDonald, A
theory of strategy, Fortune 39, 1949, pp. 100-110; John McDonald, Strategy in Poker,
Business and War, New York 1950.

2John von Neumann, Oskar Morgenstern, Theory of Games and Economic Behavior,
Princeton 1944.
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To sum up: of the two possible motives for Bluffing, the first
is the desire to give a (false) impression of strength in (real)
weakness; the second is the desire to give a (false) impression
of weakness in (real) strength. Both are instances of inverted
signaling .. .1i.e., of misleading the opponent.

Typical properties of poker variants can be translated into simple mod-
els that, in contrast to the real variants, can be analyzed mathematically
within manageable limits. Like physical models, these offer the advantage
that the characteristic properties are highlighted. Here are von Neumann
and Morgenstern again:

However, actual Poker is really a much too complicated subject
for an exhausitve discussion and so we shall have to subject it to
some simplifying modifications, some of which are, indeed, quite
radical. It seems to us, nevertheless, that the basic idea of Poker
and its decisive properties will be conserved in our simplified
form. Therefore it will be possible to base general conclusions
and interpretations on the results which we are going to obtain
by the application of the theory previously established.

We begin with a simple game that contains the basic elements of poker:

each of two players obtains, after putting up an ante of eight units, a
high card or a low card, randomly and with equal probability. More-
over, the values of the two cards are independent: they can be thought
of as dealt from two different decks.

the first player can pass or raise his bet from 8 to 12. If he passes,
then the showdown takes place at once, where the player with the
higher card wins both players™ hets. If the cards are the same, each
player gets his ante back.

if the first player has raised, then the second player can decide whether
to pass or keep playing. In the first case, he loses his bet. In the sec-
ond, he also adds an additional four units to the pot to “see” his
opponent, that is, to force a showdown. Again, the winner is the
player with the higher card.

The rules of the game are shown schematically in Figure 35.1.
Each of the two players can choose from among four pure strategies:

the strategy of the first player must have a move for the case of a
high card and a move for a low card, namely, pass (P) or raise (R).
The strategies will be denoted PP, PR, RP, and RR. For example,
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card distribution
and ante of 8

player 1 ... ... passes ... raises

showdown
at8

player 2 ... ... passes ... places bet to see

player 1 showdown
wins 8 at12

Figure 35.1. The possible decisions in the poker model.

the abbreviation PR means pass with a low card and raise with a
high card.

e the strategy of the second player determines his reaction to the open-
ing moves in which the first player has raised the bet. This player
must decide for each kind of card whether to pass or to see. Thus he,
too, has four pure strategies, namely, PP, PS, SP, and SS.

To obtain the normal form, we must investigate the course of the game
for each of the 4 x4 = 16 combinations of strategies. There are four different
ways in which the cards can be dealt. Table 35.1 shows the normal form
for two selected strategy pairs, where the four equiprobable scores of the
first player depend on the hand dealt. Here L stands for a low card, and
H for a high card.

In Table 35.1 it is seen clearly that the first player has an advantage.
He can protect himself from loss by always passing with the strategy PP.
Better is the strategy PR, which passes only on a low card and raises the

Player 2
PP PS sp SS L8 H:S
PP 0 0 0 0 LP 0 -8
p H:It 12 1]
Player 1 PR 2 0 3 14
RP 6 1 4 -1
RR 8 1 7 0
A
.5 H:P
L:R 0 3

H:R 12 3

Table 35.1. Normal form of the poker model.
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bet on a high card. That is not only intuitively clear, since raising with
a high card is completely without risk, but can be seen as well from the
normal form: regardless of how the second player decides, the expectation
from PR is always at least as high as from PP. Such a situation is character-
ized by saying that strategy PR dominates strategy PP. While dominated
strategies can have their place in optimal strategies, their role can always
be replaced by a dominating strategy. Thus dominated strategies can be
ignored when one seeks only an optimal strategy for each player.

There are other dominated strategies in the normal form presented in
Table 35.1 for our primitive poker model. Thus the strategy RR of the
first player dominates the strategy RP. A similar situation obtains for the
second player, for whom the strategy PP is dominated by PS, and SP by
SS. Since only the first player's score is shown in the normal form, the
dominance criterion for the minimizing player is obtained by changing the
order of the numbers. That is, if the relation exists between two columns
that each entry of the first column is at least as big as the corresponding
entry of the second column, then the strategy corresponding to the first
column is dominated.

In our example, the four dominance properties that we have found are
not in the least surprising. They say nothing more than that the first player
should always raise with a high card and that the second player should
always be prepared to see with a high card. Both decisions are completely
safe under the given circumstances and therefore optimal. The dominance
relationships thus formally confirm a principle that is obvious from the
point of view of the game itself. What is more important is that the normal
form can be greatly simplified using these dominances. Namely, if one
eliminates the rows and columns associated with the dominated strategies,
then one has the 2 x 2 remainder shown in Table 35.2.

Based on our experience with “even or odd,” one at once suspects that
both players should randomly mix their strategies in the proportion 1: 1.
The value of the game is 1/2. With respect to the individual decisions to
be made, the result can be interpreted as follows:

e if a player holds a high card, he can always risk a higher bet; that is,
he raises as first player and does likewise as second player.

Player 2

PS 5SS

Player 1 PR | 0 1
RR |1 0

Table 35.2. Poker model: the normal form without dominated strategies.
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e with a low card a player passes with probability 1/2. With the same
probability he takes a risk; that is, he raises as first player or sees as
second player.

Bluffing in the form of raising the bet despite the presence of a low card
can be seen to be strategically necessary on the objective mathematical
level. The concrete decision whether to bluff is made randomly, without
using any psychological impressions. The underlying quantitative frame-
work, that is, the probabilities with which the various strategies are chosen,
determine the degree of success that a player can expect on average.

Since the model that we have used is extremely simple, there is much to
learn that our model has not been able to reveal. Therefore, we would do
well to investigate some additional poker models whose construction has
more in common with the real card game. We will require some universal
algorithms that allow for the calculation of minimax strategies. We shall
look at these in the coming chapters.




36

Symmetric Games:
Disadvantages Are

Avoidable, but How?

In symmetric two-person zero-sum games, both players are guaranteed the
existence of a mized strateqy that can prevent a negative expectation. How
can such strategies be found?

Symmetric games were given particular consideration by Borel. As men-
tioned in Chapter 33, one can restrict attention to symmetric games, since
every game can be viewed as part of a symmetric game. A game whaose
normal form contains n rows and m columns can be “embedded” in a sym-
metric game in which each of the two players has m + n + 1 strategies
from which to choose (see Note 1 at the end of the chapter). Moreover,
the minimax value of a symmetric game is known a priori; it is zero. Thus
a given strategy can be tested relatively easily to see whether it is in fact
optimal. This was discussed in Chapter 33: one must check how the given
strategy works against every possible strategy of the opponent. That is,
the corresponding expectations must be calculated. Then a strategy for
white is optimal if none of these expectations is negative, and that can be
determined, as Borel showed, by the solution of a system of inequalities.

For example, if a minimax strategy for white is sought for a game with
normal form

380
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Black Chooses

1 2 3 4

0 1 = 2
-1 0 1 -4

3 -1 0 3
4| =2 4 = 0

White
Chooses

W=

then one must solve the system of linear inequalities

—xg 4+ 3z — 224 2 0,

x, — a3 +4dxy =0,
—3x1 + 32 — 324 = 0,
2xy — 4dxo 4+ 3x5 2 0,

where the conditions
I 2 0, XIg 2 0._. &Iz 2 []. Iy Z [] Iy 4 o -+ Ia - Iy = ].,

must also be satisfied.

Such systems of inequalities can be seen as a generalization of systems
of linear equalities, which are studied in many branches of mathematics.
In addition to greater-than-or-equal relations, one might include equali-
ties and less-than-or-equal relations. These, too, can be transformed as
necessary into greater-than-or-equal relations: an equation yields two in-
equalities. In comparison to systems of linear equations, the theory of
systems of inequalities has a much briefer tradition.

We should note as well that Borel considered the systems of inequalities
associated with symmetric games as unsolvable in general, although prob-
lems of this kind had been solved years before in certain special cases. A
significant turn of events occurred in 1947 with the development of linear
optimization—due in large measure to Dantzig, then a civilian employee
of the US Air Force—a discipline founded expressly for applications in
the area of military logistics. The objects of study in linear optimiza-
tion are methods by which, for example, costs can be minimized or yields
maximized, to the extent that the controlling parameters, their possible
values, and their effect on the quantities to be optimized are completely
known, and that the entire system assumes a particular linear form. When
Dantzig found that such problems arose repeatedly and frequently took
on a typical linear form, he turned for advice to the economist and later
Nobel Prize winner, Tjalling Koopmans (1910-1985). However, his hopes
of learning about some well-known standard solution methods were soon
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dashed.! Therefore, Dantzig set out on his own to find a practical solution
algorithm. Success came in 1947 with the simplex algorithm (see “Linear

36. Symmetric Games: Disadvantages Are Avoidable, but How!

Optimization” and “The Simplex Algorithm”).

T

Linear Optimization

A typical problem of linear optimization deals with a simple
model of a production process and its optimal control. A deci-
sion has to be made as to the various quantities in which various
products should be produced. One has to take into account the
capacities of the various resources, such as labor, machine out-
put, and availability of raw materials, as well as profits that
can be achieved above and beyond the production costs. Let us
consider a simple example.

Resources A, B, C, and D are used to produce products X and
Y in quantities & and y, respectively. The following facts are
known:

e the achievable profit in producing products X and Y is 2
monetary units per unit of X, and 3 monetary units per
unit of Y. That is, one obtains a net profit P given by

P =2z + 3y.

e the use of resources and their limits of capacity are given
by a series of inequalities:

— to produce one unit of product X requires one unit
of resource A, while four units of A are required to
produce one unit of Y.

— there are 24 units of resource A available.

LOnly later did it become known that the Russian mathematician Leonid Vital'evich
Kantorovich (1912-1986) had studied such optimization problems a decade earlier. How-
ever, certain obstacles prevented him from achieving a breakthrough, even though the
In 1975, Kantorovich shared the Nobel Prize in
Economics with Koopmans. See the book of Dantzig previously cited, as well as L. V.
Kantorovich, My journey in science, Russian Mathematical Surveys 42:2, 1987, pp. 233
270; L. V. Kantorovich, Mathematical methods of organizing and planning production,

main ideas are present in his work.

Management Science 6, 1960, pp. 366-422 (Russian original 1939).
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This yields the inequality

x + 4y < 24

We assume similar conditions for the other resources that
yield the following inequalities:

T+ 2y <14 from B,
z+y <10 from C,
2r4+y <17 from D.

e finally, we recognize real-world limitations not stated ex-
plicitly in the model:

x>0 and y=0.

Simple situations like that of our example can be displayed
graphically. We enter the possible production plans character-
ized by the numbers x and g into a two-dimensional coordinate
system. In our optimization we must consider all pairs (z, y)
that satisfy all six inequalities, called side conditions. Each of
the six inequalities defines a half-plane, that is, a region in the
plane lying entirely on one side of a straight line. The equation
of this line is found by replacing the inequality sign with an
equal sign. If one then forms the set-theoretic intersection of
the six half-planes, one obtains a geometric representation of
all possible production plans, that is, all those that satisfy the
six constraints:
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x+dy=24

10

2x+y= 14

5 10 2x+ y=17
x+y=10

What is the profit distribution within the region of possible
plans? In particular, where does it attain its largest value? To
answer this question we represent the profit graphically as well.
‘We obtain a set of level lines, each representing a particular
value of the profit. In the following figure, such lines are shown
for the levels 6, 12,18, 24, 30:

24 30

| N
/X

We see at once from the figure that the maximum achievable
profit is 24, and that the associated production plan, which
corresponds to a vertex of the admissible region, consists in
producing & = 6 and y = 4 units of products X and Y.

Although our example is painfully simple, it reveals some of the

typical properties of linear optimization problems, in which—

though generally for more than two parameters x and y—optimal
values are to be determined:

e one seeks—after a reformulation if necessary—the maxi-
mum of a linear function that must satisfy certain side
conditions presented in the form of greater-than-or-equal
inequalities.
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e it is useful to indicate the permissible values of the parame-
ters geometrically. The number of dimensions is equal to
the number of parameters, and even with four or more pa-
rameters such a representation is useful, and even though
the possibility of visualization is lost, the techniques of an-
alytic geometry can be used in these higher-dimensional
situations.

e cach of the linear side conditions individually limits the
admissible region to a half-plane. The set-theoretic inter-
section of these half-planes yields the range of admissible
values for the parameters that underlie the optimization.
The following figure represents a simple three-dimensional
example:

e the admissible region is always convex.

e since the value to be optimized, the target value, depends
linearly on the parameters, the achievable values form a
collection of parallel hyperplanes—thus the name of a lin-
ear subspace whose dimension is one less than that of the
space in which it is embedded. In particular, in three-
dimensional space a hyperplane is a normal plane. Every
hyperplane within the collection corresponds to precisely
one possible target value.

e if there exist optimal parametric values, then they can
always be found at a vertex of the admissible region.

e however, such optimal vertices do not necessarily exist, nor
need they be unique.

— All the points of a side can represent optimal parame-
ters. Then every vertex of that side is optimal.

— The admissible region might be empty. Such linear
optimization problems have no solution.

385
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— Optimization problems with an unbounded admissible
region may also be unsolvable, since the value to be
optimized may grow without bound.

There are a number of algorithms for solving linear optimiza-
tion problems. The most frequently used is Dantzig's simplex
algorithm. For difficult cases, which arise seldom in practice,
there is a better algorithm, discovered in 1984 by Karmarkar
(see Note 2 at the end of the chapter).

The connections between linear optimization and game theory were
quickly—though not immediately—recognized. As Dantzig later reported,?
John von Neumann had suspected already in 1947 that the theory of games
for two-person zero-sum games was equivalent to linear optimization. And
that is exactly what was proved later to be the case. In particular, the
equivalent of the minimax theorem was found within linear optimization
(see Note 3 at the end of the chapter). Here, however, we do not wish to
concern ourselves with the theoretical equivalence, but with how the algo-
rithms of linear optimization can be used to calculate minimax strategies.
‘We will begin by restricting attention to symmetric games and use an old
example to demonstrate what is going on. Starting with the system of
inequalities already formulated, we start with a small trick: we weaken the
side condition

Ty -+ Ta+ Ty + T4 =1

to the inequality
T+ xetra4 1y <1

and then search in the enlarged region of admissible values x, x5, 23,24
for the maximum of the function

T+ To + Tg -+ T4.

Of course, we already know that the maximum is 1. But we are not really
interested in the maximum itself, but in the parametric values z,, xs, 23, 24
for which the maximum is attained, for these give us the desired strategy.
The actual calculation can be done using the simplex algorithm. Beginning
with the admissible values

Ty = Tz = T3 = Ty,

the maximum is increased step by step to the value 1.

2Interview in Donald J. Albers, Gerald J. Albers, Constance Reid (eds.), More Math-
ematical People, San Diego 1990, pp. 73-77.
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The Simplex Algorithm

The idea of Dantzig’s simplex algorithm is based on the geomet-
ric interpretation of a linear optimization problem. However,
the geometric properties, as they play a role in the algorithm,
are always characterized purely algebraically: thus we have seen
already that one can always find a maximum for a solvable prob-
lem by examining the vertices of the admissible region. But
what is a vertex? That is, how can a vertex be characterized
algebraically, and how can one be determined?

Let us look first at the horder of the admissible region. Such
a border point is characterized by equality holding for at least
one of the greater-than-or-equal side conditions. In the case of
vertices and other “special” border points there must be addi-
tional identities that are satisfied. The following figure clarifies
this idea for two simple examples, where the admissible region
is two-dimensional in the left-hand figure and three-dimensional
in the one on the right:

sides:  at least one equality faces: atleast one equality
vertices: at least two equalities edges: at least two equalities
vertices: at least three equalities

One could now attempt to carry out a search of all the vertices of
the admissible region. To do this, we determine the vertices by
prescribing equality in sufficiently many of the side conditions
and then solving the resulting system of equalities. If such a
system has a solution and if all the nonnegativity conditions are
satisfied, then we have found a vertex. If we have determined all
the vertices in this way, then we finally choose the largest one of
the possible target values. Since in large optimization problems
the number of vertices grows very rapidly, such a process is
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hardly practicable. A significantly better modus operandi is
the following step-by-step method.

Starting at a vertex that has been located, the edges leaving
this vertex are then investigated to see how the optimization
function changes along the given direction. If no edge goes in
a direction in which the function grows, then one has found
the maximum. Otherwise, one chooses an edge along which the
function increases and follows it to the next vertex. Compu-
tationally, this is done by giving up an equality relation in the
side conditions and substituting an additional relation. This
exchange is called the pivot step.

In transforming the geometric idea into computational form,
one must note that greater-than-or-equal relationships are al-
gebraically difficult to handle. Therefore, the inequalities are
transformed into equalities with a so-called slack variable, and
these are then solved step by step through a selection of vari-
ables. Each such solution corresponds to a vertex, and indeed,
the properties of the optimization problem become particularly
clear in a neighborhood of this vertex. Let us consider the ex-
ample that we introduced in the previous sidebar:

T= 2r + 3y,
=24 — x — 4y,
ug =14 - z= - 2y,
uz =10 - = - y,
ug =17 — 2=z - y.

Here T stands for the target optimal value, that is, the proceeds
to be maximized. In addition to the four side conditions, all
the variables, including the slack variables wy, us, us, 1y, must
be nonnegative:

x>0, y=>0, w >0, w=0 uz3=>0, uy>0.

This form of the side conditions corresponds to the vertex (z,y) =
(0,0). Clearly, the target T' can be improved with respect to
the value obtained. To this end, the variables x and y can be
increased within certain limits without violating a side condi-
tion. In the simplex algorithm, however, only a single variable
is selected at each step to he increased starting with the value
0. Since for the same amount of increase the variable y pro-
vides a greater increase in the target, we decide to increase the
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variable y. But how far can we go with this? A look at the
four equations shows that we must stop with y = 6, since then
the variable w; reaches the value 0, while the other variables
ug, Uy, uq are still positive. In order to obtain information on
the growth of the target for the vertex with = = 0 and y = 6,
analogously to what we obtained for the first vertex, the second
equation, which provides the bound on the amount of increase,
is solved for y and the result substituted into the other four
equations:

@ Increasing the variable y
would raise the target value

@ T = 29:+\l/

= 3y N
This equation .
bounds the possible > uw, = 24 - 1 - 4y
Increase in y u, = 14 - = — 2y %
u, = 10 - =z - —
u, = 17 — 2z — N
1 I ;4:
¥y = 6 -1 — 7u,
. The equation solved
Solve the bounding for y is substituted
equation for y into the others

Geometrically, the form of the system of equalities that arises
represents a change to a coordinate system with the point
(z,y) = (0,6) as the origin and axes x and u;. Purely alge-
braically, it is simply a transformation of the inequalities to an
equivalent system so that the target and side conditions can be
considered relative to another base point. The result is

| =4

: 3
T=18+1I'-Zul,

4
NS T
y==0 411',‘ 41,1'.1._.
1 1
u2=2—§l‘+§ul,
3 1
u;;:d—'ZI'PE’U.l,
7
u4=11-—-—:r:+—ul.

4 4
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From the first equation one sees at once that a further increase
of the target can be achieved only if the variable x increases
above 0. How far this value can grow without making one of
the variables negative is given by the third equation, namely, up
to the value # = 4. Again the equation that gives the limiting
value is solved for the variable z and then substituted into the
other equations. The result is

|4

I 1
T =23— —}u2+ Eul,

Uy =4+ —ug — —uy.
4 QU2 — gt

To obtain a further increase in the target T', the value of the
variable u; must be increased above 0. This is possible, if no
side condition is violated, up to the limit u; = 2, for beyond
that point the variable us becomes negative. As in the previous
steps, the equation giving the limit is solved for the variable to
be increased, u1, and substituted into the other equations:

T =24 — ugy — ug,
y=4—us+ us,

x =04 uy — 2ug,
uy = 2+ 3us — 2ug,

Uy = 1+ —Uy + 31}.3.

As can be seen from the first equation, the value of T' cannot
exceed 24. This concludes the optimization. We would now
like to look graphically at the path covered thus far through
the vertices. In the next figure the affected vertices are marked
with the letters “a” through “d.”

What is significant in this example of the calculational steps
is the solution of the equations for a changing number of vari-
ables. Step by step, a cleverly chosen equation is solved for a
suitable variable, and then this result is substituted into the
other equations. Which equation and which variable were to
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N

24

—>
5 10 X

be chosen depended on the current form of the target function
and the side conditions.

In the literature, the simplex algorithm is generally described
in terms of tables, called simplex tableaus. In this way it is pos-
sible to completely describe formulaically the selection of rows
and columns in a calculational step and the subsequent trans-
formation of the coefficients. The actual calculations, though,
are the same. Simplex tableaus will be described in the next
chapter.

391

If we proceed as in “The Simplex Algorithm,” then with a symmet-
ric game we begin our search for a minimax strategy with the system of

equations
T =x1 + xs + 3 + x4,
uy = —xz + dzg — 24,
Ug = T] — Ty — 2Ty,
Uz = —3371 + xg — 31"4':
U4 = 2x1 — 4xrs + 313,

us =1 —x1 — x2 — T3 — T4,
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where none of the wvariables zy,...,z; and none of the slack variables
uq, ..., us; may be negative. The system is transformed step by step:

.

1 4
T=--uz+ 5332 + x3,

up = —xs + 3rz — 2x4,
LI +3
Uy = — —U: =Ty — X3 + 3T4,
2 3 3 3 2 3 4,
1 + 1
T = 311»5 3-?32 Ty,
2 10 + 3x3 + 2
Uy = —SUg — —— T T Ty,
4 3 3 3 2 3 4,
1+ !
Uz = 3'{1.3 32}‘2 &Iy,

The result of the first transformation step is interesting in that it yields
no improvement. Despite the exchange of the variables #; and w3, no new
vertex is reached. Geometrically, one might imagine such a phenomenon
as a “multiple” vertex, in which more edges, faces, and so on intersect than
the “usual” required minimum.? No further vertex is reached in the next
steps of the simplex algorithm. Finally, one reaches another vertex with
the optimal value T' = 1. The coordinates are

xy =0, :n2=§, Ty = 3 Iy ==,
and so the minimax strategy for the symmetric game has been found.

Of much greater importance than this special result is the fact that the
method described always works, even for asymmetric games once they have
been symmetrized. The calculation of minimax strategies can therefore fail
in practice only as a result of the complexity of the game in question.

Chapter Notes

1. In practice, it is usual either to play two games with roles interchanged or
one game with the first player determined by lot. In each case a strategy in
the symmetric game encompasses plans for both roles in the original game.
From a game-theoretic point of view this is somewhat disquieting, since it

30ne may also demonstrate the multiple character of vertices by slightly altering
the data of the optimization problem. Then multiple vertices split. Multiple vertices
can lead to problems in the simplex algorithm if a circular chain of variable exchanges
results.
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makes the normal form much larger. If the players originally have n and
m strategies, respectively, then the number of strategies in the symmetric
version grows to nm for each player.

Using a different procedure, proposed around 1949 by Brown and Dantzig,
the normal form grows much less dramatically. In this variant, the distribu-
tion of roles is accomplished with a game like rock—paper—scissors: assume
a game in which white has an advantage, that is, a game with positive
value. This can be accomplished by raising all the scores by an amount
sufficient to make them all positive. This possibly modified game is now
symmetrized. To accomplish this, in analogy to rock—paper—scissors, both
players are required to choose simultaneously from among three selections:
white, black, and one. If both players make the same choice, then the game
ends in a draw. With the selection white—black or black—white, a game is
played with the roles so assigned. In the other four cases the score is 1,
determined as follows: one beats white and loses to black.

Like rock—paper—scissors there is no single best choice, and depending on
the value of the original game, all three selections must be chosen with
particular nonzero probabilities. The decisions for white and black must
be expanded to include strategic decisions for the actual game that might
follow. One can always limit oneself to a single role in the original game,
namely, the one previously selected. Here both players have n 4+ m + 1
strategies.

See D. Gale, H.W. Kuhn, A. W. Tucker, On symmetric games, in: H. W,
Kuhn, A. W. Tucker (eds.), Contributions to the theory of games I, Annals
of Mathematics Studies 24, 1950, pp. 81-87; R. Duncan Luce, Howard
Raiffa, Games and Decision, Toronto 1957, pp. 440-442.

2. One can create linear optimization problems for which the usual variants of

the simplex algorithm are unsuited for obtaining a solution in polynomially
bounded time. The simplex algorithm, which has proved useful in practice,
thus exhibits its theoretic limitations. In this sense, a better algorithm is
the ellipsoid method, for which the Russian Khachiyan proved in 1979 that
it always leads to a solution in polynomial time.
Linear optimization problems to be solved by the ellipsoid method are
first transformed into systems of inequalities, for which a solution is then
sought; we have done just that implicitly in our symmetrization of games
at the beginning of this chapter. Then the solution set of the system is
bounded step by step via a series of shrinking ellipsoids. Each step begins
with an ellipsoid that contains all solutions of the system of inequalities:

e if the midpoint of the ellipse is a solution, then one is done.

e otherwise, the coordinates of the midpoint violate at least one inequal-
ity. This inequality represents geometrically a separating hyperplane.
If one transforms this plane linearly, so that the midpoint of the el-
lipsoid lies on it, then all solutions lie in one of the halves of the
ellipsoid separated by this hyperplane. The following figure shows a
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typical situation, with the solution set shown in cross-hatching, the
hyperplane for the violated inequality as a dotted line:

The decisive step of the ellipsoid method now consists in a general proce-
dure for constructing a smaller ellipsoid out of a half-ellipsoid:

e the new ellipsoid completely contains the half-ellipsoid.

o the volume of the new ellipsoid is smaller by a certain factor than
that of the previous ellipsoid.

Since one can deform the axes of the ellipsoid, it is sufficient in princi-
ple to carry out the construction for a hypersphere. The following figure
illustrates the two-dimensional case:

D
N

For a system of inequalities whose solution set is bounded but that rep-
resents a true volume, this successive shrinking of the ellipsoids must end
after a number of steps that can be estimated in advance, where the last
midpoint yields a solution. Other systems of inequalities can be trans-
formed as necessary, such as, for example, by allowing oneself some “gen-
erosity” with respect to the inequalities and extending slightly the given
bounds.

While Khachiyan's method works well in theory, in practice it is generally
inferior to the simplex algorithm. So in 1984 Karmarkar presented a decid-
edly better algorithm. Nomnetheless, the simplex algorithm has remained
the most popular method for linear optimization.

For more on the methods of Karmarkar and Khachiyan, see Ulrich De-
rigs, Neuere Ansatze in der Linearen Optimierung, Operations Research
Proceedings 29, 1985, pp. 47-58; A. Shrijver, The new linear progamming
method of Karmarkar, Centrum voor Wiskunde en Informatica Newsletter
8, 1985, pp. 2-14; Neuer Dampf, Der Spiegel 49, 1984, pp. 239-240; Varék
Chvatal, Linear Programming, New York 1983; Robert G. Bland, Donald
Goldfarb, Michael J. Todd, The ellipsoid method, Operations Research 29,
1981, pp. 1039-1091.
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3. This is the so-called duality theorem, which relates a given linear optimiza-

tion problem to another optimization problem, called the dual optimiza-
tion problem. In the example considered in “Linear Optimization,” the
dual problem asks about the values of the individual resources based on a
marginal cost analysis. That is, resources are evaluated on the basis of the
growth in proceeds that accrue from a very small increase in the resources.
In this sense, resources that are never exhausted in the optimal production
plan are worthless. In our example, for the four resources A, B, C, and D
we have the values a =0, b=1,c=1, and d = 0.
As with the minimax strategies of a two-person zero-sum game, the solu-
tions of the two dual problems supplement each other, and the solution
of one can be used, even if one has just happened to guess the values by
chance, to confirm the solution of the other. To this end one simply adds
the inequalities with weights that correspond to the solution of the dual.
With regard to the valuesa =0, b= 1, ¢ =1, and d = 0, one adds in the
example the second and third inequalities and obtains

2z 4 3y < 24,

so that the maximum obtainable income 2x + 3y can be at most 24. That
it must be at least 24 follows from the values = = 6, y = 4, which satisfy
all the conditions.

What formal requirements must such values a, b, ¢, d satisty so that a con-
jectured optimality of a pair of values z and y can be confirmed? The
procedure can be used analogously when the numbers a, b, ¢, d are greater
than or equal to zero and the conditions
at+b+e+2d>2,
da+2b+2c+2d >3

are satisfied. Moreover, the expression
24a + 14b 4+ 1Tc +d

can attain at most the value of the maximum to be verified, which in our
case is 24. That is, the values a, b, c,d can be derived from a minimiza-
tion problem whose starting parameters are transposed with respect to the
original geometric arrangement:
minimize
24a + 14b+ 1Tc+d

subject to the conditions

a+b+e+2d =2,
da+2b+2c+d > 3,

as well as
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The duality theorem of linear optimization states in principle that a solu-
tion of every solvable optimization problem can be verified by a solution
of the dual optimization problem.

In Chapter 37 we will meet some special examples of mutually dual opti-
mization problems and their analyses by two-person zero-sum games from
the point of view of the two players.

Further Literature on Linear Optimization

[1] Lothar Collatz, Wolfgang Wetterling, Optimierungsaufgaben, Berlin 1971.
[

3]

| Peter Kall, Mathematische Methoden des Operations Research, Stuttgart 1976.
3

4

David Gale, The Theory of Linear Economic Models, Chicago 1960.

]
]

Robert Dorfman, Paul A. Samuelson, Robert M. Solow, Linear Programming
and Economic Analysis, New York 1958.

One can also find overviews in practically any mathematical reference work.
Here are some sources written at a fairly elementary level:

[6] For All Practical Purposes: Introduction to Contemporary Mathematics, New
York 1988.

[6] John Casti, Five Golden Rules, New York 1996.

[7] Robert G. Bland, Wirtschaftsfaktor lineare Programmierung, Spektrum der
Wissenschaft 8, 1981, pp. 119-130.




37

Minimax and Linear
Optimization:
As Simple as Can Be

We would like to find the simplest method for calculating the minimazx
strategies for both players of a two-person zero-sum game given by its nor-
mal form.

The method introduced in the previous chapter for caleulating minimax
strategies by first symmetrizing a game leads for a normal form with n
rows and m columns to a linear optimization problem with m +n + 1
variables and m + n + 2 additional slack variables. Since the size of the
optimization problem determines in great measure the amount of work
necessary for its solution, one is naturally led to the question of whether
the minimax strategies might be found using a less extensive optimization
problem. In fact, they can be. The simplest method is that introduced
in 1960 by Albert W. Tucker (1905-1995), one of the pioneers of linear
optimization and game theory.! Tucker’s approach manages with only m
variables and n additional slack variables. We will demonstrate the method
by means of an example. We return to a game discussed in Chapter 34:

1A, W. Tucker, Solving a matrix game by linear programming, IBM Journal of Re-
search and Development 4, 1960, pp. 507-517.

397
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Black
1 2 3 4
White 1 2 -1 1 2
2 | -1 1 0 1

In searching for minimax strategies for white and black, we start by
posing two linear optimization problems whose solutions contain the desired
minimax strategies. We begin with the maximizing player white, who mixes
her two strategies with probabilities x; and x5 to ensure for herself the
greatest possible winning expectation. Formally, we are looking for two
numbers x; and x5 for which a maximum wvalue v is obtained under the
conditions

2r), —xp 2 0,

—T1 + 10 = 0,

Ty > v,
2z 4+ 15 = 0,
zy @ =1,
x1 2 0,
xg = 0.
White's goal:
v = max!

Black, on the other hand, seeks four numbers y;,ys,ys, ya that yield
the smallest possible value of v under the conditions

21 — Y2+ Yz +2ys < v,
“Y1+ Y2+ ys < v,
ntytyztuys=1,
Y1, Y2, U3, Ya=0.

Black’s goal:
v = min!

There are now various ways of transforming the two stated problems
into the standard form of an optimization problem. The most direct way
consists in treating the value v to be optimized as a variable. However,
Tucker’s suggested method makes do with one variable and one side con-
dition fewer. One begins with the assumption that the game value, that
is, the achievable maximum, respectively minimum, in the first or second
optimization problem is positive. This is assured us for the game under
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consideration based on our investigations in Chapter 34.2 Otherwise, a suf-
ficiently larger bonus is set for white so that all the entries in the normal
form are positive. In what follows, the variables can yield almost optimal
values only when v is positive. Therefore, for these values it is permitted to
divide individual inequalities by v; we do this to the inequalities for which
v is on the right-hand side. Then the variables are replaced as follows:

x T .
Xi==, X==2 yn=%2 pn=8 yp-28 y-%

v v ( u v 1
Together with the supplementary slack variables X3, ..., Xg, Y5, Y, which

allow us to change the inequalities to equalities, we obtain the following
optimization problem:

¢ under the side conditions

X;; = -1+ 2X1 - Xz._.

Xy=-1-X; + Xy,
Xs=-14+X;,
Xo = =14 2X, + Xo,

and the nonnegativity condition
Xl!"":Xﬁ 2 0':
white maximizes the value of —1/v; that is,

- X1 — X5 = max!

¢ analogously, under the side conditions

Ye=1+4+2(-Y)) —(-Ys) + (—=Y3) + 2(-Ya),
Yo =1—(-Y1)+ (-Yal) + (- Ya),

together with the nonnegativity condition
Yi,...,Ys 20,
black minimizes the value of —1/v; that is,

(=Y1) + (-Y2) + (-Y3) + (—Y4) = min!

20ne may also convince oneself of a positive value directly if white mixes her two
strategies randomly in the proportion 2 : 3.
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The reason that the second optimization problem is formulated with
negative variables will now be made clear. Such a formulation allows both
problems, whose side conditions employ the same coefficients, though not
in the same order, to be represented using a single array of numbers. Such a
simplex tableau is to be read both horizontally and vertically (see “Simplex
Tableaus and the Rectangle Rule”). The nonnegativity conditions are not
considered in the simplex tableau:

"'Trnax — X:‘] — X:l — Xﬁ — X{'} —
Tonin = 0 1 1 1 1 x(—1)
Y'g; = 1 2 -1 1 2 XX]
Ye = 1 -1 1 0 1 XXQ

Simplex Tableaus and the Rectangle Rule

It has been shown useful for several reasons to use simplex
tableaus in the simplex algorithm: the same factors that save
on the amount of writing that has to be done in a manual cal-
culation make possible in a computer program the direct use
of data organization and manipulation. Furthermore, two re-
lationships can be represented with the same data structure.
Let us look first at a simplex tableau, which has the following
general form:
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Without loss of generality, we may restrict our attention to
2 x 2 tableaus to spare ourselves the many ellipsis marks (---).
A tableau represents the two systems

A =p(-C)+2(-D),
B =s(-C)+r(-D),

and

Il

(8}
3

P+ s,

Il

zy +rd.

With this interpretation it is clear how a simplex tableau can
be transformed. Rows can be interchanged with one another,
as can columns, provided that the variables at the edges are in-
terchanged along with them. Of greater significance, however,
is the interchange of a row with a column. Such an exchange
represents a transformation such as occurs in each step of the
simplex algorithm. For p # 0, the first equations of both sys-
tems will be solved for C' and 5. The result in then substituted
into the other equation:

1 z
= —(~A) + =(-D),
_p( )+_p( );

B= (a4 (r - E) (-D),

and .
¥=—-a+ ——55,
p P

_ﬁ:fa-k(r—-ﬁ)é.
p P

We see that the transformed system of equations again yields a
common simplex tableau:

oy

S AL
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Instead of transforming the system of equalities, one could sim-
ply calculate with simplex tableaus. Here are the general rules:

e the number at the intersection of the interchanged row and
column, the pivot element (p), is replaced by its reciprocal.

e the other numbers of the pivot row (z) are divided by the
pivot element.

e the other numbers of the pivot column (s) are divided by
the negative of the pivot element.

e for the rest of the numbers (r) one follows the rectangle
rule, whereby one forms a rectangle determined by the
pivot element and the current number to be transformed:
using the four numbers on the corners of this rectangle,
one calculates the new value using the formula r — sz/p.

e the variables on the edge are interchanged between the
pivot row and pivot column, where in the exchange be-
tween the left and bottom edges and conversely the signs
are to be changed.

The nonnegativity conditions are not considered in the simplex
tableau. They are taken into account indirectly in the simplex
algorithm via the starting tableau and the choice of pivot, that
is, in the choice of row and column to be exchanged.

/‘*w'

Before we begin with the actual simplex algorithm, we would like to
interpret the starting tableau: the parametric values corresponding to the
tableau arise from all the variables beneath and on the right being equal to
zero. Only the Y variables, with Y; =Yy =1l and V1 =¥, =V, =Y, =0,
satisfy the nonnegativity conditions. Regarding the X wvariables, on the
other hand, with X3 = X; = X; = Xy = —1 and X; = X35 = 0 there
are no admissible parametric values for the related optimization problem.
Such will be obtained only with the last exchange step.

Since only the ¥ values are admissible, we must orient the exchange
steps to the associated minimization problem, as we established in the
previous chapter: except for the left-most column, any column may be
chosen for the exchange, provided that a positive number is in the first
row. A Y variable associated with such a column reduces the target value
Twin When it grows above 0. Once such a pivot column is chosen, one
must then find the correct pivot row. The criterion is that this row must
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offer the sharpest bound for the affected ¥ variable with respect to the
nonnegativity conditions. One seeks, then, among the rows with a positive
number within the pivot column one whose quotient from the numbers of
the first column and the pivot column is minimal.

If one holds to these two general criteria, namely, positive value in the
highest row and minimal quotient with positive denominator, then the rest
of the pivot selection is arbitrary. Somewhat arbitrarily, namely in choosing
a pivot element of 1 so as to avoid fractions, we begin by exchanging the

variables Y5 and Y;:

"'Tmax - X:{ — X4 - Xl - Xb -

T,.. 1 1 2 1 1] x(-1)
K; = 1 2 -1 1 2 XX5
Y = 1 -1 1 0 1 x X3

T X XWXV <7D

In the next step, the variable ¥5 must be exchanged, since only in that
way can a further diminution of the target value Ti,;, be achieved. It can
be exchanged only with the variable ¥j:

"'Tmax - X:{ - X? - Xl - Xﬁ -

T 3 1 ) ~1 6| x(-1)
K}, = 2 2 1 1 3 XX5
Y, = 1 -1 1 0 1 x Xy

x1 x(=Y1) x(=Ys) x(=Y5) x(-Yi)

Now the variable Y; must be exchanged, since otherwise, no further
reduction in the target value Tj,;, can be achieved. It is exchanged with
the variable Yj:

"'Tmax - er - X2 - Xl - Xﬁ -

Tonin = 5 —1 —3 —2 6 | x(-1)
Yl = 2 1 1 1 3 XX;;
Y, = 3 1 2 1 4 x Xy

T X(V5) X(Ye) X(-Ye) X(-V2)

In the subrectangle above and to the right, no value is positive. This
has two consequences: first, the target value T,,;,, has reached its minimum
when the variables beneath, Y3, Y5, Y5, Yy, are all zero. Second, this is the
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first tableau for which there are not only admissible ¥ values but also
admissible X values that satisfy all the nonnegativity conditions. And
these X values are not only admissible, but even optimal for the target
value

oo = —5 — 2X5 — 3X,

if the variables X3 and X, on the right are both equal to zero. And
this is not a special property of this example, but a general property of
“dual” optimization problems, since the lower-left subrectangle contains
no negative entries.

From the optimal values Ty, = Tinin = —5 one obtains the game value
v = 1/5. Together with the optimal parametric values

X1=2, Xo=3, and Y1 =2, Y,=3, Y;=0, Y;=0,
we have the probabilities for the desired minimax strategies:
I =

Tg = and y; =

by i

o b
fars}

' Yo = s Yz = U‘ Yq = 0.

5 1
And even the optimal values of the slack variables,
X:},:U, X4=0, X',= 1_, X{-;:G_, and }/rj =10 Yﬁ;[]

give us interesting information. Positive values indicate the pure strategies
that the opponent should avoid at all costs against the found minimax
strategies. Thus in the case at hand, black should in no case choose the
strategies corresponding to the slack variables X5 = 1 and X3 = 6, that
is, the strategies “3” and “4.” The values of the variables estimate, when
multiplied by the value v = 1/5, the “costs” of the associated decision:
white can then count on an additional winning expectation in the amount
of 1/5 or 6/5 above the minimax value.

To summarize, if minimax strategies are determined for a game whose
normal form is given by the matrix A, then in the case of a positive minimax
value v, such a determination can be made in the case of a positive minimax
value v from the following tableau:

= {(1/v) cost of black's strategies =
T= 0 1 1 (-1}
Sl SRR R LR LR EEREEE R \
+(L/v) cost of white's strategies = H ' A “(1/v) probability for white
1 '
‘1 (=1/w)* probability for black

One must hold to the specified interpretation of the variables in the
exchange steps of the subsequent simplex algorithm so that the results
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above and to the left in the final tableau can be associated with the correct
variables. Variables that end up, down, or to the right are all equal to
zero. To obtain the probabilities of the minimax strategies and the costs of
erroneous decisions, one must finally divide the variable values by v. This

can be seen in the final tableau in the upper-left corner: v = —1/Ty. =
—1/Tmin.




Play It Again, Sam: Does
Experience Make Us Wiser!?

Does experience alone suffice for discovering all good game strategies? In
particular, for every two-person zero-sum game can one arrange o sequence
of games that enables one to determine the minimax strategies empirically?

There are probably few players who are able to optimize their strategies
with the help of the simplex algorithm. And moreover, most games people
play are much too complex for such calculations to actually be carried out.
But can good strategies be found without such calculations? Is a game’s
mature tradition a guarantee that good strategies have been found in an
evolutionary trial-and-error manner?

One must say that mixed strategies are as strange to many players
as they were to mathematicians for many centuries. Debates among skat
players about the correctness of the motto “Always play the ace first” arise
not only from the heat of battle, but are also an indication that patterns of
play can be considered strictly comparable, in which case mixed strategies
would be superfluous. The reason for such beliefs can be found in the
fact that minimax strategies do not necessarily represent the highest level
of play, since they do not always react sufficiently to recognizably bad
play on the part of an opponent. Indeed, there are frequently much more
important considerations in play than finding the optimal probabilities for
the various moves. Anyone who has played against a wily skat player will
acknowledge this: not only does he or she keep track of every point and
the trumps that have been played, but the entire course of the game, from

406
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the bidding to each individual trick, not to mention such auxiliary aids
such as noticing how a beginner always sorts his cards the same way. For
the average player there is thus plenty of opportunity to perfect his play
by completely evaluating the available information. Before this level has
been reached, it makes little sense to conquer one’s ignorance with a mixed
strategy.

On the other hand, in other games, particularly such strategic games as
poker, mixed strategies play a central role in usual play. Thus the concepts
of a mixed strategy can be brought into play based on empirical experience.
Could one even go so far as to imagine simulated sequences of games by
which the minimax strategies could be empirically determined?

Let us again begin with a two-person zero-sum game presented in nor-
mal form. We set up a series of games in which both players attempt to
improve their strategies progressively. Each game is played according to
the normal rules. In particular, in the individual games only pure strategies
are used. Mixed strategies enter into the picture only indirectly, namely,
as relative frequencies with which the pure strategies were chosen in the
previous games. To achieve optimal play, our two players will proceed,
according to our assumption, as follows: at the beginning of a game each
player evaluates the previous play of his opponent and interprets it as a
mixed strategy that the opponent will continue to use and that thus must
be countered as well as possible. That is, each player seeks a pure strategy
that brings the best result against the opponent’s previous average strat-
egy. George W. Brown, who developed this approach of imaginary series
of games in 1949, noted the following:!

The iterative method in question can be loosely characterized
by the fact that it rests on the traditional statistician’s phi-
losophy of basing future decisions on the relevant past history.
Visualize two statisticians, perhaps ignorant of min—-max the-
ory, playing many plays of the same discrete zero-sum game.
One might naturally expect a statistician to keep track of the
opponent’s past plays and, in the absence of more sophisticated
calculation, perhaps to choose at each play the optimum pure
strategy against the mixture represented by all the opponent’s
past plays.

Let us begin with an example, returning to the poker model from Chap-
ter 35:

1G. W. Brown, Iterative solutions of games by fictitious play, in: T.C. Koopmanns
(ed.), Activity Analysis of Production and Allocation, Cowles Commission Conference
Monograph 13 New York 1951, pp. 374-376.
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38. Play It Again, Sam: Does Experience Make Us Wiser!?

Black Chooses

1 2 3 4

White 1|0 0 0 0
Chooses 2|2 0 3 1
316 1 4 -1

418 1 7 0

Let us see how the games go:

1.

in the first game, neither player possesses any information about the
opponent’s manner of playing. Since we wish in general to assume
that the players will always choose among strategies with equally
good prospects the one with the smallest number, each will choose
the first strategy for the first game.

in the second game, each player starts with the assumption that the
opponent will stick to the first strategy. For white, then, it is clear
that she should choose her fourth strategy. Black, on the other hand,
has the same prospects for all four of his strategies, and so black
again decides for his first strategy.

in the third game, the picture becomes more interesting. White must
again decide on her fourth strategy, since black has thus far chosen
only the strategy 1. Black, however, suspects that white is using
a mixed strategy in which the pure strategies 1 and 4 are mixed
randomly in proportion 1 : 1. White's expectation depends on black’s
reply: 4, 0.5, 3.5, and 0.

at the beginning of the fourth game, the players reason as follows:
white assumes that black mixes his first and fourth strategies ran-
domly with proportion 2 : 1, while black assumes that white mixes
her strategies 1 and 4 in proportion 1 : 2. On this basis, both players
decide on their fourth strategies.

We will spare ourselves the gory details of additional games. If one
really wished to carry out these computations, one should write a computer
program to do it. For purposes of demonstration in a simple game with
not too many rounds, a spreadsheet program will do.? Table 38.1 shows
the results of the first 50 games. The net results for 100, 1000, 10000,
and 100000 games can be seen in Table 38.2. The following information is
given:

2Table 38.1 was created with a spreadsheet program. Not shown are the auxiliary
columns that reflect the minimization and maximization and the resulting selection of
the strategies for the next game.
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¢ the frequencies of the strategies in the previous parties.

e the winning expectations derived from the corresponding mix of strate-
gies.

¢ the bound on the game value resulting from the two current mixtures
of strategies, calculated on the basis of the best possible counterstrat-
egy to be used by each player in the following game.

One can see that the dominated strategies 1 and 3 are chosen by white
and black at most in the initial phases. Thereafter, the game is concen-
trated on those strategies that arise from the two minimax strategies. Al-
together, in this game both the relative frequencies and the winning expec-
tations appear to converge. That is, our empirical game simulation yields
both the game value and the minimax strategies.

Brown's iterative procedure for improving the strategies of both play-
ers simulaneously in a type of learning process works in great generality.
In 1951 the mathematician Julia Robinson® (1919-1985) showed that the
game value can be bounded arbitrarily closely, although the process can
be very protracted.? However, the average strategies of the two players
need not converge. This is not too bad, though, since in every step the
strategies determined are also good enough to allow the current bounding
of the game value. With the convergence of the bounding values, the two
strategies become arbitrarily good.

In practice, the slow convergence has a negative effect, particularly for
a game with a large normal form. Thus if the maximal remaining approx-
imation error is to be halved for a game with n and m strategies after a
fixed number of games, then the number of games must be increased by a
factor of up to 2™*+"~!, This is much slower than a Monte Carlo simula-
tion, which we saw in Chapter 15 as an empirical method for determining
expectations. There the average error is halved after only four times the
number of steps.

There is another point of view for considering a comparison with the
Monte Carlo method: in contrast to that method, the one considered here
is absolutely deterministic. Of course, in individual steps there can be
ambiguity if a player has two or more equally good strategies from which

3 Julia Robinson is best known for her contributions to Hilbert's tenth problem, men-
tioned in Chapter 28. She did significant work that underlaid the ultimate solution
found by Yuri Matiasevich.

4Julia Robinson, An iterative method for solving a game, Annals of Mathematics
54, 1951, pp. 296-301; reprinted in Harold W. Kuhn (ed.), Classics in Game Theory,
Princeton 1997, pp. 27-35; H. M. Shapiro, Note on a computation method in the theory
of games, Communications on Pure and Applied Mathematics 11, 1958, pp. h88-593.
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38. Play It Again, Sam: Does Experience Make Us Wiser!

Previous Strategy Frequencies

Winning Expectation

Game| Strategy of White Black for Current Probability | Game Value
#|White Black|l 2 3 4|1 2 3 4 Distribution Min | Max
0 0000000 0
1] 1 1 (1000100 0 0.000 0.000| 8.000
2 4 1 (1001)]200 0 4.000 0.000| 8.000
3 4 4 (1002|200 1 3.556 0.000] 5.333
4 4 4 (1003|200 2 3.000 0.000| 4.000
5 4 4 (100 4]2 00 3 2.560 0.000] 3.200
6 4 4 (1005200 4 2.222 0.000]| 2.667
T 4 4 (1006|200 5 1.959 0.000] 2.286
8 4 4 (1007|200 6 1.750 0.000] 2.000
9 4 4 (1008|200 ki 1.580 0.000] 1.778
10| 4 4 (1009200 8 1.440 0.000]| 1.600
11| 4 4 (1 0 010(2 00 9 1.322 0.000] 1.455
12| 4 4 (1 0 011(2 0 0 10 1.222 0.000] 1.333
13| 4 4 (1 0 012(2 00 11 1.136 0.000] 1.231
14| 4 4 (1 0 0132 00 12 1.061 0.000] 1.143
15| 2 4 (11 013(2 00 13 1.000 0.067] 1.133
16| 2 4 (1 2 013(2 00 14 0.953 0.125] 1.125
17| 2 4 (1 3 013|200 15 0.917 0.176] 1.118
18| 2 4 (1 4 013]2 00 16 0.889 0.222] 1.111
19| 2 4 (1 5 013]2 00 17 0.867 0.263] 1.105
20| 2 4 (1 6 013]2 00 18 0.850 0.300] 1.100
21| 2 4 (1 7 0132 00 19 0.837 0.333] 1.095
22| 2 4 (1 8 013|2 00 20 0.826 0.364] 1.091
23| 2 4 (1 9 013]2 00 21 0.819 0.391]| 1.087
24| 2 4 (110013]2 00 22 0.813 0.417| 1.083
25| 2 4 (111 013(2 00 23 0.808 0.440]| 1.080
26| 2 4 (112013(2 00 24 0.805 0.462| 1.077
27| 2 4 (113013(2 00 25 0.802 0.481] 1.074
28| 2 2 |114013|12 10 25 0.800 0.464]| 1.036
29| 2 2 |115013|12 20 25 0.795 0.448| 1.000
30| 2 2 |116013|2 3 0 25 0.790 0.433| 0.967
31| 2 2 (117 013|]2 4 0 25 0.784 0.419| 0.935
32| 2 2 |118013|12 50 25 0.776 0.406| 0.906
33| 2 2 |119013)12 6 0 25 0.769 0.394| 0.879
34| 2 2 |120013)]2 70 25 0.760 0.382| 0.853
35| 2 2 |121013|12 80 25 0.752 0.371] 0.829
36| 2 2 |122013|12 90 25 0.743 0.361] 0.806
3r| 2 2 |123013|2100 25 0.734 0.351] 0.784
38| 2 2 |124013|2110 25 0.725 0.342] 0.763
39| 2 2 |125013|12120 25 0.716 0.333] 0.744
40| 2 2 (12601312130 25 0.707 0.325] 0.725
41| 2 2 (127 013|214 0 25 0.698 0.317] 0.732
42| 4 2 |127014)2150 25 0.690 0.333] 0.738
43| 4 2 127 015|216 0 25 0.683 0.349| 0.744
44| 4 2 {127 016|217 0 25 0.677 0.364| 0.750
45| 4 2 (127 017|218 0 25 0.672 0.378] 0.756
46| 4 2 (127 018|2190 25 0.668 0.391] 0.761
47| 4 2 {127 019|2 200 25 0.664 0.404| 0.766
48| 4 2 (1270202210 25 0.661 0.417] 0.771
49| 4 2 (127 021)2220 25 0.658 0.429| 0.776
50| 4 2 {127 022|2230 25 0.656 0.440| 0.780

Table 38.1. The first 50 games.
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Previous Strategy Frequencies Winning
Game White Black Expectation for Current| Game Value
Number[l 2 3 4 |1 2 3 4 |Probability Distribution| Min | Max
100f1 55 0 44 |2 40 0 58 0.5874 0.4400 | 0.6200
1000|1 514 0 485 |2 485 0 513 0.5087 0.4850(0.5170
100001 5026 0 4973 |2 4949 0 5049 0.5009 0.4973]0.5053
100000|1 50031 0 499682 50185 0 49813 0.5001 0.5001|0.5020

Table 38.2. Net results up to 100 000 games.

to choose. But something of the sort can occur equally likely for a step in
the simplex algorithm. That is, despite the empirical nature of the basic
idea, we are dealing with a purely calculational procedure. In particular,
in games with random elements, one must always work with expectations,
as we did in our example of the primitive poker model. Individual games
are therefore played only in their strategic components, not their random
ones according to the actual rules.
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Le Her: Should | Exchange?

White and black are playing a game to see who draws the higher card. They
use a normal 52-card deck, with king high and ace low. If the two cards
draun have the same value, black wins.

The game begins with each player receiving a card, and a third card is
laid face down on the table. Then each player has a chance of improving
his or her situation. White goes first. She is allowed to exchange cards
with black. Unless black is holding a king, he must accept the request for
an exchange. Regardless of what transpired on white’s turn, black on his
turn has the chance to exchange his card for the card lying face down on
the table, though if he draws a king, he must return it. Then both players
show their cards and score the game.

Which cards should the players exchange, and which not?

The game that we have just described was played in the 18" century under
the name “le Her.” In contrast to the games with mixed minimax strategies
that we have considered thus far, this game exhibits a significantly greater
complexity. For example, white has 13 individual decisions that can be
combined in any way. Namely, for each card value she has to plan whether
an exchange should be made. This gives white 2 pure strategies. Black’s
cogitations are even more involved, since his decision is based not only on
the card he holds, but on the results of white's turn as well.

Despite the apparent complexity of the game le Her, one can obtain
minimax strategies fairly easily. They yield white a winning expectation of
0.0251, which corresponds to a probahility of winning equal to 0.5125:

412
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e white

— exchanges all cards up to and including a 6;
— exchanges a 7 with probability 3/8;

— retains all cards 8 and above.
e black

— in the case that white has declined to exchange, black exchanges

# all cards up to and including a 7;
# an 8 with probability 5/8;

* no higher cards.

— If white has exchanged cards, then black exchanges if and only
if his card is worse than the card that he knows white to be
holding.

A point of great interest about the game le Her is the fact that the
minimax strategies just described were discovered more than two centuries
before the systematic investigations of Borel and von Neumann. Little
is known about their discoverer, an Englishman named Waldegrave who
probably was living in Paris. Waldegrave learned about the game from
Pierre Rémond de Montmort (1678-1719), who in 1708 had published a
book on games of chance, Fssay d’analyse sur les jeur de hasard, in which
he raised the question of the best strategy for le Her. Ome can see the
difficulties in the solution to this problem from an exchange of letters in
the following years between Montmort and Nicholas Bernoulli (1687-1759),
a nephew of Jacob Bernoulli, the discoverer of the law of large numbers. In
all, 16 letters from the years 1711-1715 contain discussions on le Her.! In
this exchange are also included suggestions that Waldegrave had made to
Montmort. Waldegrave's central idea appears in a letter of Montmort dated
15 November 1713 to a very skeptical Nicholas Bernoulli, which Montmort
included as an appendix in the second edition of his book on games of

1Julian Henny, Niklaus und Johann Bernoullis Forschungen auf dem Gebiet der
‘Wahrscheinlichkeitsrechnung in ihrem Briefwechsel mit Pierre Rémond de Montmort,
dissertation, Basel 1973, in: Die Werke von Jakob Bernoulli, Band 3, Basel 1975,
pp. 457-507; Robert W. Dimand, Mary Ann Dimand, The early history of the the-
ory of strategic games from Waldegrave to Borel, in: E. Roy Weintraub (ed.), Toward
a History of Game Theory, Durham 1992, pp. 15-28; Robert W. Dimand, Mary Ann
Dimand, The History of Game Theory, From the Beginnings to 1945, volume 1, Lon-
don 1996, pp. 120-123; Anders Hald, A History of Probability and Statistics and Their
Applications Before 1750, New York 1990, Chapter 18, in particular, Section 18.6.
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chance.? Montmort quotes in this letter a letter from Waldegrave of two
days earlier on the subject of le Her.?

Bernoulli, Montmort, and Waldegrave were in complete agreement on
the optimal strategy for most situations arising in the game. Disagreement
was focused on how white was to play a 7, and black, if white had declined
to exchange, an 8. These two decisions have properties of the sort that we
have come to know from the game “even or odd”: There is no one “best”
move. Which move is best depends on how the opponent decides in the
other situation. Waldegrave therefore suggests that the decision be made
randomly. He imagines that a token is drawn from a container contain-
ing tokens of two different colors. Waldegrave assumes that white's supply
contains a tokens for “exchange” and b tokens for “no exchange,” while
black’s supply contains ¢ for exchange and d for no exchange. After exten-
sive combinatorial considerations, one finally concludes that the winning
probability for white is given by

2828ac + 2834be + 2838ad + 2828b¢
13 x 17 x 25(a + b)(c + d)

This formula, which appears in the first paragraphs of Montmort’s let-
ter,? serves as Waldegrave’s starting point. He recognizes that with a
strategic mix by white with the values @ = 3 and b = 5, it doesn’t matter
whether black exchanges. White always wins with probability

2831 3

9525 5525 x 4

This probability that white wins can also be fixed by black, who, ac-
cording to Waldegrave, should use the values ¢ = 5 and d = 3. Then
it doesn’t matter how white decides to play a 7. Waldegrave considers
other proportions to be risky. Regarding player white, whom he calls Paul,
Waldegrave remarks:

It is true that for values of a and b that differ from a = 3 and
b = 5, Paul [white] can improve his situation if Peter [black]

2Pierre Rémond de Montmort, Essay d’analyse sur les jeur de hasard, second edition,
Paris 1713, reprint New York 1980, pp. 403-413, and also 321, 334, 338, 348, 361, 376.

SMontmort’s letter appears in partial English translation in Harold Kuhn, James
Waldegrave, Excerpt from a letter, in: William J. Baumoel, Stephen M. Goldfeld (eds.},
Precursors in Mathematical Economics: An Anthology, Series of Reprints of Source
Works in Political Economics 19, London 1968, pp. 3-9, reprinted in Mary Ann Dimand,
Robert W. Dimand, The Foundations of Game Theory, Cheltenham 1997, volume I,
pp. 3-9.

4Pierre Rémond de Montmort, Essay d’analyse sur les jeur de hasard, second edition,
Paris 1713, Reprint New York 1980, p. 404, where the denominator has been transformed
into modern notation.
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makes the wrong decision. But he will worsen his situation if
Peter [black] makes the correct choice.

We can best understand Waldegrave's result by expressing the winning
probability for white as a function of the two probabilities p = a/(a + b)
and u = ¢/(c+ d):

11327 — (8p — 3)(8u — 5)
22100 '

It is apparent at once that white can eliminate the risk arising from the
opponent’s decision only with the value p = 3/8. The same is possible for
black, but only with the probability u = 5/8.

Waldegrave’s ideas found little positive resonance with his contempo-
raries, beginning with Bernoulli.® But thanks to Montmort’s book they
were not completely forgotten. Thus in 1865, Todhunter mentioned Walde-
grave’s explanation of le Her in a historical survey of probability theory. He
even mentioned Waldegrave’s suggestion that one’s strategy should he var-
ied, though not that this should be done in a random manner and which
probabilities were the best.® Todhunter’s book in turn inspired Roland
Aylmer Fisher (1890-1962) in 1934 to investigate the game le Her. Fisher,
one of the founders of modern statistics, also realized that the optimal
strategy is to mix the moves in question in the proportion 3 : 5.7 That
made Fisher, who was apparently unaware of the work of Waldegrave,
Borel, and von Neumann, the fourth person to solve a minimax situation
with mixed strategies independently of his predecessors. Twenty-five years
later, Waldegrave's work was rediscovered.®

SNevertheless, Bernoulli later adopted Waldegrave's ideas with reservations, and even
solved a simple game problem himself using his methods. The game was a variant of
“even or odd™:

Black Guesses
“Od d!l “Evcn?!

1 2
White “0Odd” 1 -1 0
Chooses  “Even” 2 0 —4

Without describing how he obtained his solution, Bernoulli suggests the mixed strat-
egy (4/5,1/5) in a letter of 20 February 1714, which is optimal for both players. See the
work of Henny previously cited, p. 502.

51, Todhunter, A History of the Mathematical Theory of Probability from the Time
of Pascal to That of Laplace, Cambridge 1865, reprint New York 19635, pp. 106-110.

"R. A. Fisher, Randomisation, and an old enigma of card play, Mathematical Gazette
18, 1934, pp. 294-297.

8G.Th. Guilbaud, Faut-il jouer au plus fin, in: La Décision, Editions du Centre

National de la Recherche Scientifique, Paris 1961, pp. 171-182.
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We have not gone into the combinatorial thinking that underlies the
formula cited above, nor have we discussed game situations in which there
is a single best decision. In fact, our interest is not particularly focused
on the game le Her. Rather, we would like to find in principle a program-
mable method whose memory requirements and computation time are not
predetermined by the fact that several thousand rows and columns need
to be calculated and further processed. How can the complete calcula-
tion of a normal form be avoided? The answer to this question is close
at hand. Consider the chronological course of the game as a sequence of
decisions. On this basis it is relatively easy to counter opposing strategies
optimally: assume that a player knows the mixed strategies of his oppo-
nent. If he declines to decide among his random move options and the
resulting influence of chance in the game, then the game becomes in prin-
ciple a one-person game of chance, within which the player must attempt
to react as optimally as possible. Optimal moves can be calculated by in-
vestigating the game situation in reverse order of the course of the game
and thus searching for a move that presents the best winning expectation,
as we saw in Chapter 17 for the game blackjack. The result is the gradual
arrival at a pure strategy that optimally counters the opponent’s strategy.

Since in le Her each player draws only once, the chronology of the game
is quite simple. If the pure or mixed strategy of the opponent is known, then
for each decision point one can determine whether one should exchange or
not. To find the total strategy, there are 13 situations to distinguish for
each of black and white. For each card value one determines whether an
exchange profitably counters the opposing strategy. The decisions that
black has to make when white has previously decided to exchange require
no detailed investigation. Black, who in this case knows the opponent’s
card, decides on an exchange precisely when he holds the worse card.

Optimal replies are always made with respect to a fixed strategy of
the opponent. Minimax strategies, on the other hand, optimize what is
assuredly obtainable without regard to the opponent’s actions. But how
can such strategies be determined based on optimal replies? Since the
procedure introduced in the previous chapter of an imaginary series of
games was designed to determine optimal counterstrategies, it makes sense
to apply those techniques. In particular, one does not have to compute
the normal form. Otherwise, the actual procedure remains unchanged;
that is, a continual updating of which strategies are used and how often is
carried out during the iteration. On this basis, step by step, in the absence
of the normal form using the technique just described, a pure strategy is
determined for each player that optimally counters the previous average
strategy of the opponent. Since most pure strategies are much too weak
ever to be considered the best possible opposing strategy, the number of
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strategies actually used in these imaginary games remains limited. The
result is a simplification at the beginning of the procedure in relation to
the usual version. However, due to the additional work for each step, this
advantage is soon eaten up.

Optimal replies are not limited to placement within imaginary series
of games. They can also be used for computing minimax strategies with
the help of the simplex algorithm. Here, as with the imaginary games,
one proceeds stepwise, where each step is associated with a small (if pos-
sible) number of pure strategies. Then step by step a pair of minimax
strategies related to the current selection of pure strategies is calculated
with the help of the simplex algorithm. How good these strategies fare
in actual play, in which all pure strategies are available to both sides, is
seen by determining the optimal counterstrategy to them. The iteration
is continued as long as at least one player can improve his prospects with
a particular counterstrategy, where the counterstrategy in question is then
used in the selection of strategies in the following steps. Thus the minimax
optimization is gradually extended to all relevant pure strategies.

We would now like to use le Her to study how quickly such an optimiza-
tion procedure can lead to the goal. Table 39.1 documents the process,
which ends after five steps.

Although both players begin with rather stupid strategies in which no
card is exchanged, the tactically interesting strategies appear quickly. Ta-
ble 39.1 does not contain the mixed strategies that were computed for the
current strategy selection with the help of the simplex algorithm. These
“relative” minimax strategies serve only in finding optimal counterstrate-
gies. Thus it can be determined how good the minimax strategies found
actually are, as can be read from the last two columns of the table, and
how the strategic selection is to be expanded, which can be seen from the
second and third columns of the next step.

In the last step one obtains the two desired minimax strategies:

Winning Expectation

Minimax for White If the
Additional Range of Value of Minimax Strategy Is
Step Strategy for Strategies for Selection Optimally Countered by
White Black White Black Black White
never exch. never exch. 1 1 —0.0588235 —0.2586425 0.1523379

0.0104374  0.0063348  0.0406033
0.0273303  0.0237104  0.0273303
0.0237104  0.0237104  0.0258824
0.0250679  0.0250679  0.0250679

exch. to 5 exch. to 6 2
exch. to T exch. to 7 3
—_ exch. to 8 3

4

exch. to 6 —

o L0 B

Table 39.1. Iterative search for a minimax strategy for le Her.
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e white exchanges all cards up to 6 with probability 5/8, and all cards
up to 7 with probability 3/8.

¢ black exchanges all cards up to 7 with probability 3/8, and all cards
up to 8 with probability 5/8.

These are precisely the strategies found by Waldegrave, though now
computed with a concept that can in principle be used for every game that
does not present too many decision situations.
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Deciding at Random: But How!?

A player employs a mized strategy by making a single random decision at
the start of a game that determines his play for the rest of the game. Can
the random play of a minimaz strategy also be organized move by move?
That is, can each successive move be determined by a separate random
decision?

Such a question is not nearly so academic as it might seem. Let us recall
the game le Her, which we investigated in the previous chapter. From
a practical point of view, a player has to weigh 13 different situations,
determined by the value of the card, and make a yes—no decision for each.
In order to avoid being seen through by the opponent, a player does well
to vary his strategic plan randomly. Instead of planning a “global” mixed
strategy that chooses a probability distribution from among the 2!% = 8192
pure strategies, it is simpler for a player to specify 13 “local” probabilities,
namely, one for each decision situation. This means that a player decides
whether or not to exchange a particular card randomly according to the
specified probability. Such a plan is called a behavioral strategy. What is
not a priori self-evident is whether the concept of a behavioral strategy is
sufficiently encompassing to be used in finding minimax strategies.
Behavioral strategies were first used in 1944 by von Neumann and Mor-
genstern in their book, Theory of Games and Economic Behavior. They
used a poker model in which each of two players must decide, based on his
or her hand, how to bid. Once again, the strict use of pure strategies has
little to recommend it, since they allow the opponent to target his coun-
termeasures effectively. But how can mixed strategies he determined in

419
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practice? Can it be done with a behavioral strategy as in le Her; that is,
is it possible for a player to decide his bidding behavior for each individual
hand? To take a simple example of two possible hands, a weak one and a
strong one, together with two possible bids, high and low, von Neumann
and Morgenstern explain the typical actions:

Then there are four possible (pure) strategies, to which we shall
give names:

“Bold”: bid “high” on every hand.
e “Cautious”: bid “low” on every hand.

e “Normal”: bid “high” on a “high” hand, “low” on a
“low” hand.

e “Bluff”: bid “high” on a “low” hand, “low” on a “high”
hand.

Then a 50-50 mixture of “Bold” and “Cautious” is in effect
the same thing as a 50-50 mixture of “Normal” and “Bluff”:
both mean that the player will, according to chance, hid 50-50
“high” or “low” on any hand.

Nevertheless these are, in our present notations, two “different”
mixed strategies . ...

That is, mixed strategies allow the “luxury” of setting not only the
probabilities of the individual decisions, but also the statistical relation-
ships among these individual decisions. We must ask, of course, whether
this is ever necessary in practice. It is certainly not so in the case of our
poker model, where a player has only a single decision to make in an indi-
vidual game. Von Neumann and Morgenstern continue:

This means, of course, that our notations, which are perfectly
suited to the general case, are redundant for many particular
games. This is a frequent occurrence in mathematical discus-
sions with general aims.

There was no reason to take account of this redundancy as long
as we were working out the general theory. But we shall remove
it now for the particular game under consideration.

In fact, von Neumann and Morgenstern succeeded in finding optimal
behavioral strategies for their poker model. In comparison to the use of
mixed strategies, their optimization based on individual decisions offers a
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significant simplification: for the arbitrary number S of equiprobable hands
in their poker model, for each of which there are three possible bids, instead
of having to search for 3% optimal values, the number is reduced to 35.1

When a player moves, he must do so based on the information currently
available to him. Instead of the information that the players possess al-
together, here it is a larger or smaller subset, depending on the game. If
in a game the states of information of the players do not agree entirely,
then one speaks of a game with imperfect information. With respect to
individual games, there can be two reasons for this:

e frequently, the results of random influences are known directly to only
some of the players. Thus in a card game a player knows only his
own cards, but not those of his opponent.

e it is in no way obvious that the hehavior of the opponents is clear to a
player. For example, which two cards a single player in skat lays face
down, how many matchsticks a player takes in his hand in a gambling
game, or how a player sets up his pieces at the beginning of a game
like Stratego or ghosts, whose type is not apparent because they are
laid face down, all these behaviors remain hidden at first from the
player’s opponents.

These two reasons can be understood together if one imagines random
influences in a game as the moves of a fictitious player, where this imaginary
player plays according to a fixed behavioral strategy that is known to the
players and that corresponds exactly to the random decisions: then all the
cases of imperfect information are the result of the fact that a player on
his turn knows only in part how the players, both real and fictional, have
played in the previous moves. If one imagines that the course of the game is
completely determined by the sequence of actions of the players, including
the imaginary one, then it becomes clear that there is no other cause of
the imperfect information.

The character of a game is largely determined by how comprehensively
a player whose turn it is, is informed about what moves have been made
thus far in the game. Here there are informational components about which
it is actually quite plausible that the player knows: on the one hand, this
is information about which the player already had knowledge from the
previous moves, and on the other hand, it is about the decisions that the
player himself has made. If every player has access to this information, that
is, if every player always knows what he has done and known previously,

11f one also considers that the probabilities of a random decision sum to 1, then
in passing from mixed strategies to behavioral strategies the number of parameters is
reduced even more, namely, from 3% — 1 to 285.




422 40. Deciding at Random: But How!

random decision

1%

white moves black moves

Figure 40.1. The game tree of a game with perfect information.

then we speak of a game with perfect recall. That not every game possesses
this property lies not so much with the forgetfulness of actual players, which
we are not going to consider because of its nonobjective nature, as with
that fact that a “player” in the sense that we have been talking about
need not be a single person. One can imagine a player as being a team of
mutually cooperating individuals who together attempt to maximize their
total score. In this case, on the assumption that both partners are not
allowed to share their individual knowledge, it is not necessary that some
existing information be available at all later moves. We mention again the
example of skat, in which the player playing alone must hold out against two
cooperating opponents.? Since these two do not know each other’s cards,
their decisions are made on the basis of informational states in which some
facts are continually “forgotten.,” to become known again at later moves:
as basis for the decision, sometimes only the cards of one teammate are
known, and sometimes only those of the other.

For a player to be able to move, he must know first of all that it is his
turn and what moves are available. And he must know the rules of the
game, since only then can he weigh the effect of his moves. Regardless of
the physical appearance of the game, the rules can always in principle be
described graphically, in the form of a game tree. For games with perfect in-
formation we have already seen such trees. The simple example displayed in
Figure 40.1 contains the elements that are typical of a two-person zero-sum
game with random decisions and perfect information. Each node stands
for a configuration that in the case of a game with perfect information
corresponds to a particular informational state that is openly accessible to
all players. Next to each node is indicated whose move it is or whether a
random decision is to be made. Each edge symbolizes a move or a random
decision, where in the latter case the associated probability is given. The
counterpart of a round of playing the game is a path through the game tree
that begins at the top node and ends at a node from which no further edge

28trictly speaking, this assertion does not hold for the game as such, but only for the
part of the game that begins after the bidding phase.
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chance: cards for players 1 and 2

{H = high, L = low}/r/ LH LL probability % each

player 1: pass raise pass raise ?ss ra;e\ pass ra;\

player 2: pass see pass see pass see pass see
B o 3 12 s -12 s 0

Figure 40.2. Possible moves in the poker model in the form of a game tree.

extends downward. Such nodes representing the end configurations are in-
dicated by the associated end result; in the case of a two-person zero-sum
game, it suffices to state the score of one of the players.

Information about which player, depending on the current state of the
game, can move and how he can move can also he represented as a game
tree for games without perfect information. As an example we consider the
poker model that we used in Chapter 35. Its possible moves are shown in
Figure 40.2. As one can see from the game tree alone, the game begins
with a random move, in which each of the four results is achieved with
probability 1/4. Concretely, each of the two players obtains a card that is
either high (H) or low (L). Then player 1 decides whether to raise the ante
from 8 to 12. If he passes, then a showdown arises, that is, the players
compare their cards, and the player with the better card wins 8 units. If
player 1 raises the wager to 12, then player 2 has the choice of passing or
placing the additional wager in order to see his opponent.

In contrast to games with perfect information, a game tree such as
shown in Figure 40.2 characterizes the underlying game only in part. Of
course, one sees all the possible moves that the players have available in
the course of the game, but not the informational states on the basis of
which the players must make their decisions. Of course, the game tree
shown represents a game, but a different one, which can be interpreted
as an open version of the poker model, in which each player can see his
opponent’s hand.

Fortunately, the missing information about the game can easily be
added to the game tree. To this end, we consider that a player’s partial lack
of knowledge about the current game situation can be formally described
by saying that for him, at the time of his move, several configurations are
subjectively indistinguishable. For example, player 1, if he is holding a
high card, cannot tell in deciding between “pass” and “raise” whether the
current configuration is “HH” or “HL.” Such a distinection could be made
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chance: cards for players 1 and 2 " w probability % each

m
{H = high, L= Iow}:/\’/ HH/( HL w\

player 1: ?ss raise ?ss raise 755 raise ?ss raise
NN AN
player 2: pass see pass see pass see pass see
A fooN \
8 0 8 12 8 -12 8 0

Figure 40.3. Poker model: a game tree augmented with information sets.

only by an observer who possessed all the relevant information. However,
from the point of view of player 1, the two configurations form an insepa-
rable unity that relates to his current state of information. Thus formally,
one joins these inseparable—from the point of view of the player who is to
move—configurations into an information set. Then exactly one informa-
tion set corresponds to each separate informational state. For the poker
model, the information sets, of which there are two for each player, are
shown in the game tree of Figure 40.3 as dashed lines.

The configurations of an information set can he indistinguishable for
the player to move only when its possible moves are analogous to one
another: obviously, the number of moves must also agree. However, there
need not be a unique correspondence among the possible moves. Only in
this way can the decision of a player be implemented independent of the
actual position reached in the game. In the game tree of the poker model,
the association is in the form of naming the edges representing the moves,
namely, “pass” and “see” for the two information sets of player 2.

The deseription of a game based on its chronological progress is called
the extensive form of the game. In comparison to the normal form, the
extensive form reflects the character of a game in much greater detail. In
principle, these two descriptions serve the same purpose, namely, to pro-
vide a mathematically precisely definable model for games and above all, for
interactive decision processes in economics. Both are thus uniquely repre-
sentable solely in terms of mathematical objects such as sets and numbers,
permitting them to be investigated precisely with the methods of math-
ematics within the context of game theory. In the case of the properties
of perfect information and perfect recall, the analysis begins with the for-
mulation of definitions, which can be done purely formally on the basis of
mathematical objects (see Note 1 at the end of the chapter).

Outside of the normal form, which was introduced already in the 1920s
by von Neumann and Borel, extensive game models were not investigated




Strategic Games 425

until the actual founding of game theory. A first version was described in
1944 by von Neumann and Morgenstern.? The version sketched here was
given in 1953 by Kuhn.* Based on his game model, Kuhn proved that for a
game with perfect recall, for every mixed strategy there exists an equivalent
behavioral strategy that always yields the same game results; that is, the
probabilities of the game results that are possible with a fixed but arbitrary
counterstrategy do not change in passing from a mixed strategy to the
associated behavioral strategy (see Note 2 at the end of the chapter). In
particular, optimal behavioral strategies can always be found for two-person
zero-sum games with perfect recall. Each of the two players can thus ensure
his minimax result with the help of a behavioral strategy.

For many relatively simple games Kuhn’s result ensures that minimax
strategies can be described without too great an effort. Let us consider
as an example the following symmetric model of two-person poker: each
player draws at random one of six cards 1,...,6, where the two drawings
are independent of each other and equiprobable. Then the two players bid
simultaneously, where the six levels 1,2, 3,5,10, 15 are allowed. The player
with the higher bid wins. If they bid the same amount, a showdown follows,
where the player with the higher card wins.

How can a player ensure his minimax value of zero as winning expecta-
tion? Since there are 6% = 46 656 pure strategies, it does not seem advisable
to base tactical considerations on a mixed strategy, even if many of the pure
strategies were to appear with zero probability. On the other hand, an op-
timal behavioral strategy can be given with little effort, as can be seen from
Table 40.1. One sees clearly the presence of planned bluffs. In particular,
the highest bid is made not only in the case of the two best cards, but also
with the worst, though remarkably, not with the intermediate cards.

This poker model lends itself to experimental study, without the need
for a second player. The game can be played with two normal dice and
three ten-sided dice of different colors. One first rolls for one’s own card,
and then makes a bid. Then one rolls the four remaining dice for the
opponent’s turn. The normal die determines the opponent’s card, and the
three ten-sided dice the bid,® where the selection is made according to the
tabulated behavioral strategy.

3 John von Neumann, Oskar Morgenstern, Theory of Games and Economic Behavior,
Princeton 1944.

4H. W. Kuhn, Extensive games and the problem of information, in: H. W. Kuhn,
A. W. Tucker (eds.), Contributions to the Theory of Games II, Annals of Mathematics
Studies 28, 1953, pp. 193-216, reprinted in Harold W. Kuhn (ed.), Classics in Game
Theory, Princeton 1997, pp. 46-G8.

5The interval [0, 1] can be divided into intervals representing the probabilities for the
various bids, and the three dice can be used to represent a number between 0.000 and
0.999.
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Card

Bid 1 2 3 4 b i]

1| 0.35857  0.56071 0.50643 0.46857

2 1 0.33786  0.12179  0.41179

3| 0.14143  0.16500 0.51571  0.00429

5 | 0.05629 0.12757 0.59286

10 | 0.06700 0.02493 0.08179 0.01571 0.14029

15 | 0.03886 0.26257  1.00000

Table 40.1. Symmetric poker model: optimal behavioral strategy.

The minimax strategy can be calculated much as in the case of le Her,
that is, by an iterative procedure in which a selection of pure strategies
is gradually expanded for each player. At each step, a pair of minimax
strategies is calculated corresponding to the current selection of strategies.
If a player can improve his situation vis-a-vis this pair of strategies with
a targeted counterstrategy, then his selection of strategies is expanded to
include this counterstrategy. If the targeted counterstrategies bring nei-
ther player an improvement, then one is done. In the poker model, this
procedure fortunately ends with only a fraction of all pure strategies, for
example, with 2 x 44 pure strategies for an arbitrarily chosen beginning
strategy.

The requisite two-fold calculation of optimal counterstrategies for each
iteration step is just as simple in this poker model as for le Her. For other
games as well that run for several moves, the extensive form is well suited for
the move-by-move recursive calculation of optimal counterstrategies. Once
mixed minimax strategies have been found, these are transformed into a
behavioral strategy based on Kuhn's theorem. To do this, one has only
to determine which probability distributions result from a mixed strategy
with the various information sets.

Card

Bid | 1 2 3 4 5 6
1 —0.18190 —3.33833
2 —0.02524 —0.28524 —3.44167
3 —0.09536 —3.15429
5 —0.07155  —0.23405 —2.66238
10 —2.92262

15 —0.05607 —0.23393 —0.39643

Table 40.2. Cost of a wrong decision vis-a-vis the minimax strategy.
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Table 40.2 shows how costly wrong decisions can be. If, for example, a
player believes that holding card 4 he should always bluff with the highest
bid, then he loses 0.39643 from his expectation. Since these values are
relatively small in comparison to the expected score in a game, bad moves
are hardly recognizable in comparison to random selection. Thus in this
type of poker, luck plays a larger role than strategically correct play, at
least when not too many games are played. This does not invalidate the
result, but one’s expectations should not be set too high. For in the end,
a minimax strategy has a purely defensive nature, and this function is of
course fulfilled on average.

Chapter Notes

1. Games with perfect information are characterized by the fact that a player
always knows the history of a game, that is, how it is composed of the
moves made thus far. In other words, if a player knows something, then all
the other players know the same thing. There are thus no configurations
that from the point of view of the player to move are indistinguishable.
In the formal model one can therefore define perfect information as the
property that every information set contains precisely one configuration.

Perfect recall exists when a player always remembers the decisions about
moves made thus far in the game and his previously available information.
With respect to the formal model composed of game tree and information
sets, within which the player’s knowledge, including his memory, is rep-
resented by information sets, this corresponds to the following property,
which can be used in a formal definition: if a path, corresponding to a
game, leads first through position w and later through position v whose
information sets U and V' belong to the same player, then all game paths
to configurations with information set V' pass through configurations with
information set U in which the same decision was made. Finally, this prop-
erty says simply that the information set passed through and the decisions
made there offer no additional information, since these data can be recon-
structed from each individual information set encountered in the further
course of the game.

One should not confuse the concepts of perfect information and perfect
recall with the extension of the game-theoretic model offered in 1967 by
Harsanyi to such cases in which so-called complete information is not given.
With respect to economic applications, one assumes that not all the rules
of the game are known to all the players. See Reinhard Selten, Einfiihrung
in die Theorie der Spiele mit unvollstandiger Information, in: Information
in der Wirtschaft, Schriften des Vereins fiir Socialpolitik 126, 1981, pp. 81—
147. Much less detailed and specialized, and thus more comprehensible to
a lay audience, is Reinhard Selten, Was ist eigentlich aus der Spieltheorie




428

40. Deciding at Random: But How!

geworden? Zeitschrift des Instituts fiir héhere Studien (IHS-Journal) 4,
1980, pp. 147-161, in particular, pp. 151-154.

A formal proof of this theorem is relatively complicated. Other than in
the original work of Kuhn cited, one can find a proof in Roger B. Myerson,
Game Theory: Analysis of Conflict, Cambridge 1991, pp. 154-163, 202—
204; R. Selten, Reexamination of the perfectness concept for equilibrium
points in extensive games, International Journal of Game Theory 4, 1975,
pp- 25-55, Chapter 4, reprinted in Harold W. Kuhn (ed.), Classics in Game
Theory, Princeton 1997, pp. 317-354.

Kuhn's result appears plausible if one imagines a mixed strategy that cor-
responds to no behavioral strategy: for such a strategy there is at least
one information set for which the probability distribution of the random
choice of moves depends on a previous move decision of the same player.
Since the player does not forget his move at the previous decision point
in the case of perfect information, this move is identical for all configura-
tions of the information set for which we have assumed the given selection
of moves. The probability distribution for this move can therefore also
be used without changing the expected game result; that is, the altered
strategy is equivalent to the original strategy.
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Optimal Play: Planning Efficiently

In two-person zero-sum games with perfect recall one can easily describe
minimazx strategies in the form of behavioral strategies at least when the
number of possible information sets is not toe large. The amount of com-
putation necessary can be quite large, though. To what degree can it be
limited?

This quite general question will be our motivation for summarizing the con-
cepts and techniques that we have been exploring in the previous chapters
and then pointing to some further results. We will pay particular attention
to the amount of computation necessary for the various procedures.

With the simplex algorithm we became acquainted with a method that
allows for the computation of minimax strategies. However, the application
to such games is limited in practice to games whose normal form is not too
complex. Thus even a simple game like le Her, with its 8000 or so pure
strategies, can barely be investigated directly.

Simplifications, at first exclusively in the description of strategies, can
be achieved if one uses behavioral strategies instead of mixed strategies.!
With a behavioral strategy, a player makes decisions “locally” about his
random behavior, that is, separately for each subjective informational state.

1 However, behavioral strategies are not well suited for calculations, since the winning
expectation is not linearly dependent on the probabilities that characterize the behav-
ioral strategy. Therefore, from a formal point of view, a behavioral strategy is more
difficult to handle than a mixed strategy whose probabilities influence the winning ex-
pectation in a linear manner. The realization weights implemented in the course of this
chapter have the advantage of possessing both properties, namely, linear effect of the
parameters with simultaneous reduction in the number of parameters.

429
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Therefore, a behavioral strategy can usually be characterized with many
fewer probabilities than for a mixed strategy.

Although taken together, behavioral strategies are much less diverse
than mixed strategies, their concept is quite universal: first, for every mixed
strategy there is a behavioral strategy. To obtain it, one evaluates sepa-
rately, for every information set in which the player in question moves, the
probabilities with which the player chooses the various moves. Accord-
ing to Kuhn’s theorem, for games with perfect information, the behavioral
strategy so constructed is strategically equivalent to the mixed initial strat-
egy; that is, one can exchange the strategies without altering the odds of
the game: the various results that are possible for a fixed, but arbitrary,
counterstrategy do not change their probabilities. Here the assumed prop-
erty of perfect recall for individual players, in contrast to teams, is always
present in ideal circumstances.

The actual calculation of optimal behavioral strategies was always car-
ried out in the last two chapters via the detour of mixed strategies. The
cost in computation and storage was bounded in that the normal form and
minimax strategies were calculated on the basis of a manageable selection
of pure strategies. The extent to which the winning prospects of a player
are worsened by this strategic restriction is at the outset an open question,
though it can be determined after the fact if one determines an optimal
counterstrategy to such a minimax strategy. Namely, if neither of the two
players can improve his prospects with a targeted counterstrategy, then
both minimax strategies related to the restricted game are indeed optimal.

The principal component of the criterion just sketched is the calcu-
lation of optimal counterstrategies. It is relatively simple based on the
extensive form, that is, the description of the chronological course of the
game including all possible moves, the reachable configurations, and the
information as to what information is available to the player who is to
move. To this end, the player, who knows the opponent’s mixed strategy
and wishes to counter optimally, gradually analyzes every decision situation
in reverse order of the game's chronology. Concretely, he looks for a move
that brings him the greatest winning expectation, starting with subsequent
moves from the results of the optimizations already carried out. Move by
move he thus obtains a pure strategy with which the opposing strategy can
best be countered.

The recursive method of determining an optimal counterstrategy to an
opponent’'s mixed strategy is comparable to an optimization such as we
have seen for one-person games of chance such as blackjack: of course,
during an actual game, the optimizing player does not always know the
current state of the game, though he always knows the probabilities of all
possible game states, which can therefore he collected into a configuration
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in which the divided random decision is made only later, as is the case for a
card that has been dealt but is still face down. To such an extent, a player
who knows his opponent’s mixed strategy acts within a one-person game
with single-element information sets.

Building on the facts that we have again collected here, we see that
minimax strategies can be determined iteratively, on the assumption that
we are dealing with a two-person zero-sum game with perfect recall:

e at the initial step, each player selects an arbitrary pure strategy.

e an iteration step assumes that each player possesses a selection of
pure strategies:

— first, the normal form is worked out for the selected strategies.

— then the simplex algorithm is used to calculate a pair of minimax
strategies and the associated value.

— for each of the two minimax strategies an optimal counterstrat-
egy is determined. All decision situations in which a given player
moves are optimized in reverse order of the game’s chronology.
These optimized individual decisions are combined into a pure
strategy.

e finally, one checks whether one of the two players can improve his
situation with respect to the minimax value with his specific coun-
terstrategy, depending on how he has acted for the current selection
of strategies.

— if neither of the two players found an improvement, then the two
minimax strategies that were found are optimal in the complete
game.

— otherwise, the selection of strategies of at least one player are
extended by the counterstrategy obtained. This extension takes
place precisely when the player in question can thereby improve
his result.?

According to an observation, probably first stated by Robert Wilson in
1971 in describing a similar iterative procedure,® generally only relatively

2Pure strategies that are not a component of the current minimax strategy can some-
times be removed from the selection in order to simplify the next minimax calculation.
However, one must prevent cyclic iteration loops. For example, it is possible to carry
out such strategy removal only on steps in which the thus-far narrowest bounding of the
minimax value was obtained.

3Robert Wilson, Computing equilibria of two-person games from the extensive form,
Muanagement Science 18, 1972, pp. 448-459. Wilson supports his claim with the formu-
lation “verified in computational experience on practical problems” (p. 449).
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few pure strategies appear in the mix of minimax strategies. One can then
hope that the iteration thus described brings about the desired simplifica-
tion. This conjecture was finally verified at the beginning of the 1990s on
the basis of investigations into the question of which properties of a mixed
strategy truly influence the results of a game. Using the same methods,
a procedure was created by which optimal behavioral strategies could be
directly calculated. Thus for each ending configuration, first it is ascer-
tained which decisions are necessary for a game to end in this way. There
then results, for each of the two players as well as the random influences, a
sequence of individual decisions. And conversely, these three sequences to-
gether determine the end nodes. We will now clarify this with an example,
involving yet another poker model.

In this model, two players each put in an ante of 4 units. Then each
of them draws a card, namely, a high card H or a low card L with equal
probability. The two players draw independently of each other. Then the
players bid in up to three phases, in which the bet can be raised to 6 or
9 units. Player 1, Jill, begins: either she passes and loses her ante, or she
raises her bet to 6 or 9 units. If Jill has raised, then player 2, Jack, must
decide whether to pass, see, or raise. The last of these options is available
only if Jill raised to 6. If Jack “sees,” then Jack must of course raise his
bet by the amount that Jill did, and then the winner is determined in a
showdown, where the higher card wins. In the case that Jack raises his bet
from 6 to 9, then it is Jill's turn again. Her choice is whether to pass or
raise the bet.

Let us take a look at the game tree. To keep things simple, Figure 41.1
shows only the decisions to be made and the resulting final score for Jill.
The information sets are not shown.

player 1: 469 469 469 4869
YRANEV RV RV
-4 —4 —4 4
player 2: PSR Pi PSR Pi PSR Pi PSR Pi
///\| //)\| //)\| ///kl
4 0 4 0 4 -6 4 -9 4 6 4 9 4 0 4 0
player 1: p s p s p s p s
/o /o /A / o\
-6 0 -6 -9 -6 8 -6 0

Figure 41.1. Three-stage poker model: bid, raise, see.
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chance: cards for players 1 and 2 probabilty % each

N —
(H=high, L = |0w}:N/— HHK LH HL ml_l_ ﬁ

player 1: 469 469 SEY

player 2: isn' 1\ é/i } _:QAH }' _g"éi }S“
NN i\ AZIRAYZI A

player 1: _ép 3\0 é } _ép s\g _ép, S,\D

Figure 41.2. Poker model: game tree including information sets.

On his (or her) turn, a player makes a bid based on his own card and
any bids that have been made, which of course are common knowledge.
The information that is unknown is the opponent’s card. If one collects
the nodes that are indistinguishable to the player whose turn it is at the
time of his decision into information sets, then one obtains the extended
game tree depicted in Figure 41.2. Here the naming of the moves has been
fitted to the information sets, so that the information sets alone can be
determined from the names of the moves.

As can be seen in Figure 41.2, each player must plan his strategic deci-
sions for four different situations. For Jill, our player 1, the four situations
are these:

e the decision on a high card to pass or open with a raise to 6 or 9
units. In Figure 41.2 these moves are indicated with 4, 6, and 9.

e the decision on a low card to pass or open with a raise to 6 or 9,
indicated with 4/, 6/, and 9.

¢ the decision between passing and seeing on a high card after an open-
ing bid of 6 that the opponent Jack raised to 9, denoted by p and s.

e the decision between passing and seeing on a low card after an opening
bid of 6 that the opponent Jack raised to 9, denoted by p" and s’

Counting up all the possible combinations shows that Jill has 36 pure
strategies. However, there are only 16 pure strategies that differ in their
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effects, since the last two decisions are relevant only after an opening bid
of 6.* A behavioral strategy for Jill is determined by six parameters.
Jack, our player 2, has the following four decisions to weigh:

e on a high card, against a bid by Jill of 6 he must decide between
passing and raising. In Figure 41.2 these moves are denoted by P/,
S’, and R'.

e on a low card and opening bid of 6 he must decide among passing,
seeing, and raising. These are denoted by P”, 5", and R".

e on a high card and opening bid of 9 he must decide between passing
and seeing. These are denoted by P and 5.

e on a low card and opening bid of 9 he must decide between passing
and seeing. These are denoted by P® and 5°.

Altogether, Jack has 36 different pure strategies. A behavioral strategy
for Jack can be characterized with six parameters.

On the basis of this description of the game we can now clarify how
one is to understand the concept of the decision sequences “bid-raise—see”
in the poker model. Table 41.1 shows the 28 end nodes of the game. In
the table are tabulated the three decision sequences required by each of
the two players so that the game can end at the appropriate nodes. With
each combination of three decision sequences is associated at most one end
node; that is, if there exists an associated end node, then it is uniquely
determined.

Depending on whatever mixed strategy the two players might use, for
each end node there is a probability that gives the likelihood that a game
will end at that node. In general, each such probability is the product
of three separate probabilities corresponding to the decision sequences of
the two players and the random elements. One can calculate these three
probabilities as they relate to every node, not just the end nodes, as follows:

e for a random influence, one should multiply the probabilities of all
random influences that must be reached on the path through the
game tree from the start node to the node in question.

e for a player, the probability called the realization weight specifies how
probable it is that the player makes his decisions in a way required
to reach the node in question.® There remain the decisions that arise

4Individual decisions that are irrelevant to the result of a game make it possible to
reduce the normal form.

5If one assumes a behavioral strategy, then the realization weights are, as with the
sequences of random decisions, the products of the individual probabilities.
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Node Number Score Decision Sequences
Left to Right Chance Player 1 Player 2

1 4 HH 4

2 4 HH 6 P!

3 0 HH 6 S’

4 —6 HH 6,p R’

5 0 HH 6, s R'

6 4 HH 9 P

7 0 HH 9 S

8 -4 LH 4/

9 4 LH 6’ P!
10 ~6 LH 6’ S’
11 —6 LH 6', p' R
12 -9 LH 6, s R
13 4 LH 9’ P
14 -9 LH 9’ S
15 —4 HL 4
16 4 HL 6 P
17 6 HL 6 i
18 —6 HL 6,p R"
19 9 HL 6, s R"
20 4 HL 9 Pe
21 9 HL 9 S°
22 -4 LL 4/

23 4 LL 6’ P
24 0 LL 6’ S’
25 —6 LL 6',p' R"
26 0 LL 6, s’ R"
27 4 LL 9’ pe
28 0 LL 9’ 5°

Table 41.1. Poker model: end nodes with their decision sequences.

in another way, that is, by chance or from the opponent, even though
they, too, influence the end state reached in an actual game.

We now come to the main property of decision sequences and realization
weights: if the realization weights for all decision sequences of both players
are known, then the winning expectation can be calculated without knowl-
edge of additional details about the two strategies. This is done simply by
first determining the prohability of each individual end node as the prod-
uct of the three named probabilities. Altogether, one thereby obtains the
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probability distribution for the winning score, so that the winning expec-
tation can then be easily calculated. Through this procedure it can also be
seen that the probabilities of a mixed strategy affect the player’s winning
expectation only to the extent that they alter his realization weights.

For our example of the poker model, we can read off the realization
weights that occur from Table 41.1. First, to each decision sequence that
appears there belongs a corresponding realization weight. Then come the
decision sequences associated with the start of one of the given decision se-
quences, each beginning with the empty decision sequence 2. Altogether,
the strategies of the two players are characterized by the following realiza-
tion weights:

e Player 1:

z(2), z(4), (6), z(6,p), x(6,s), =(9),
z(4'), x(6"), =(6,p), «(6',5), =(9');

e Player 2:

y(2), y(P'), y(S"), y(R"), y(P), y(S),
y(P"), y(S"), y(R"), y(P°), uy(5°).

As probabilities, the realization weights all lie in the range from 0 to
1. The maximal value of 1 is attained by the realization weights z(2) and
y(&). The other realization weights are subject to the addition law, which
must hold for the results of every decision a player makes. All in all, the
following identities must be satisfied:

and

)=1,

y(P') 4+ y(S") + y(R') = y(
y(P)+y(S) = y(@

y(P) +y(S") + y(R") = y(

y(P°) +y(S°) = y(
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Player 1
g P}' S}' R}' PH SH RH’ P S PC SO
Player 2 @
4 | -2
6 1 0 115
6,p -15 -15
6, s 0 225
9 1 0 1 225
4" | -2
6’ 1 —1.5 1 0
6.p -15 -15
6 s —2.25 0
9 1 —225 1 0

Table 41.2. Poker model “bid—raise—see’: sequential form.

Conditions derived in this way are in fact sufficient for games with per-
fect recall. That is, if there are nonnegative values for a player that satisfy
these equations, then there is a mixed strategy for them. The correspond-
ing behavioral strategy can bhe easily constructed, since every information
set can be individually investigated.

If a strategy is described using realization weights, one speaks then of
a realization plan. The effect of realization plans can best be investigated
with the help of a table similar to the normal form, the sequential form of
a game. Such a table appears as Table 41.2 for the poker model that we
have been considering. One obtains its entries by analyzing the end nodes,
where we may use the data from Table 41.1: for each entry one must
determine the end configurations that are reachable with the associated
decision sequence. Due to random decisions, this can involve more than
one node, as we see for example in the case of the decision sequence pair
4, @. In such cases one uses the expectation. Where there is no reachable
end node, the gap is indicated by a 0.

As with the generally clearly larger normal form, the sequential form
enables one to calculate the winning expectation of the first player as a
function of two existing realization plans. Each table entry is reached with
a probability that is given as the product of the two associated realization
weights.®

SThis corresponds to the product x'Ay, where & and y are the column vectors of
the realization plans of the two players, and A the matrix of the sequential form of the
game.
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Realization weights were studied by Daphne Koller, Nimrod Megiddo,
and Bernhard von Stengel in the early 1990s. They later learned that the
Russian Joseph Romanovsky had published some important ideas on this
topic in 1962, which were then expanded in 1969 by the mathematician
E. B. Yanovskaya. Koller and Megiddo used realization weights to prove
that every mixed strategy can be replaced by a completely strategically
equivalent strategy that consists of a mix of at most as many pure strate-
gies as there are end nodes in the game tree (see Note 1 at the end of
the chapter). This also explains Wilson’s observation that optimal strate-
gies generally contain comparatively few pure strategies. Earlier, Koller
and Megiddo had already shown that an optimal strategy of a two-person
zero-sum game with perfect recall can always be calculated at a cost that
is polynomially bounded in the size of the game tree.” However, their al-
gorithm is not very practicable.® Much simpler is the method that goes
back to Romanovsky and von Stengel in which the optimal behavioral
strategies are calculated using a linear optimization problem whose size
is proportional to the number of end nodes.” The variables of the linear
optimization problem include, among other things, a player’s realization
weights and yield as the optimum that player’'s desired minimax strategy.
Additionally, the optimization problem contains additional variables: one
associated with the game’s beginning and the others with the opponent’s
information sets. They specify the opponent’s best options against the
minimax strategy in question. In particular, each of these variables can be
interpreted as a proportional winning expectation, where only those games
are evaluated that run through the opponent’s associated information sets.
To obtain an impression of this method, let us look at the optimization
problem for our poker model that calculates the second player’s minimax
strategy:

7"Daphne Koller, Nimrod Megiddo, The complexity of two-person-zero-sum games in
extensive form, Games and Behavior 4, 1992, pp. 528-552.

8Koller and Megiddo characterize a player’s strategy with realization weights. Pos-
sible counterstrategies are investigated in the form of pure strategies, where the quality
of a counterstrategy is evaluated with a special property of the ellipsoid method that
was introduced briefly in a note in Chapter 36 of this book.

97.V. Romanovsky, Reduction of a game with perfect recall to a constrained matrix
game (in Russian), Doklady Akademii Nauk SSSRE 114, 1962, pp. 62-64, English trans-
lation in Soviet Mathematics 3, 1962, pp. 678-681; see also Mathematical Reviews 25,
1963, #1958; Bernhard von Stengel, Efficient computation of behavior strategies, Games
and Behavior 14, 1996, pp. 220-246; Daphne Koller, Nimrod Megiddo, Bernhard von
Stengel, Fast algorithms for finding randomized strategies in game trees, in: Proceedings
of the 26th ACM Symposium of the Theory of Computing, New York 1994, pp. 750-759;
Bernhard von Stengel, Computing equilibria for two-person games, in: R.J. Aumann,
S. Hart (eds.), Handbook of Game Theory, volume 3, Amsterdam 2001.
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Minimize uy under the following conditions:
up > u(d:6:9) +u(d 16" :9,
u(4:6:9) > —2y(2),

u(d: 6:9) > y(P) + y(P") + Sy(8") +ulp - ),
u(p:s) > —gy(R’) - gy(R”),
u(p: ) > Jy(R),
u(d:6:9) > y(P) +y(P°) + 1y(5°),
u(4' :6':9") > —2y(@),
u(d :6:9) > y(P') + y(P") ~ 3u(S) + ulp : ),
u(p' = s') = —gy(R’) - gy(R”),
u(p : 5') > _gy(R’),
ud':6'59) > y(P) - Tu(S) + u(P°),
y(2) = 1,
Y(P') +y(S") + y(R') = y(2),
y(P) +y(S) = y(9)
y(P") +y(S") + y(R") = y(2),
y(P%) +y(S7) = y(9),

and

y(2), y(P'), y(S), y(R"), y(P), y(S),
y(P"), y(8"), y(R"), y(P°), y(S°) = 0.

Where does this optimization problem come from? We will restrict our
attention here to a plausibility argument (see Note 2 at the end of the
chapter): the first group of side conditions is added to the already known
side conditions for the realization weights y(2),...,y(S?). They charac-
terize the best that player 1 can achieve against an arbitrary realization
plan as fixed by the y values. In particular, the variable u; is the win-
ning expectation of player 1. Its minimum specifies the most that player 1
can achieve against the strategy of player 2 determined by the realization
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weights y(&),...,y(S°). Each of the remaining u variables relates to an
information set of player 1 and is denoted by the possible moves, such as,
for example, 4 : 6 : 9 for an opening bid by player 1 holding a high card.
The value of such a variable specifies the highest winning expectation that
player 1 can achieve against the strategy of his opponent determined by
y, where only games that run through the associated information set are
considered. This yields for every possible move an inequality whose actual
form depends on the further course of the game. For example, player 1
can choose among the moves 4, 6, and 9 in the information set denoted by
4:6:9. The possible continuations from that point are reflected in the
following inequalities:

4 (pass holding a high card):

u(4:6:9) > —2y(2);
6 (raise on 6 holding a high card):
3
u(4:6:9) = y(P') +y(P") + Zy(S") +ulp: 5);
9 (raise on 9 holding a high card):
oy 1 D go
u(d:6:9) 2 y(P) +y(P°) + _y(5°).

We shall see that the right-hand side of each of these inequalities yields
the maximal proportional winning expectation that player 1 can achieve
with the associated move. Therefore, u(4 : 6 : 9) is equal to the maximum
of the three values that can be computationally established by the three
inequalities: that w(4: 6 :9) is at least as big as the maximum of the three
values is obvious. The converse statement, namely, that (4 : 6 : 9) is at
most equal to the maximum, is a result of the minimization process.

To obtain the terms on the right-hand side of such a move inequality,
one must take into account the effect of the move in question at each node of
its information set. This is done by adding to the winning expectations the
contributions that correspond to possible continuations, possibly stretching
over a number of moves. Only when an end node is reached or a further
move of player 1 arises is the associated portion of the winning expectation
not further split up:

e if an end node is reached, the proportional winning expectation is
equal to the product made up of:
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chance: cards for players 1 and 2

— the associated scores,

— the associated realization weight of player 2 that is specified by
the corresponding y variable,

— the probabilities associated with the previous random moves.

For example, the move 4 leads from the information set denoted by
4:6:9to two end nodes. Both possess the score —4 and for player 2
the realization weight y(2) = 1. The probability of the necessary ran-
dom moves is 1/4 in each case. Therefore, the proportional winning
expectation in the case of the move 4 is equal to —2y(&) = —2.

if one reaches a node at which player 1 must move again, then, be-
cause of the perfect recall, all nodes that helong to the same informa-
tion set are likewise reached by the relevant continnations. Therefore,
the sum of the corresponding portions of the winning expectation is
equal to the associated u variable.

For example, the move 6 leads from the information set denoted by
4: 6 :9 after an opposing move decision to four end nodes as well
as to the two nodes of the information set denoted by p : s. The
associated paths are indicated with heavy lines in Figure 41.3.

The proportional winning expectation in the case of move 6 thus
contains the variable u(p : s) as summand. Altogether, it is equal to

y(P') + y(P") + %y(S”) +u(p:s).

(H = high, L = low): HH LH HL LL probability Y each

player 1: 469 46y 469 469

player 2: PSR P S FP'S'R" P S P"S"R" P°'S" P"S"R" P'8"
/1] . /1| .
4 0 4 0 4 -6 4 -9 4 86 4 9 4 0 4 0
player 1: P s pros p s p s
-6 1] -6 -9 -6 9 -6 ]

Figure 41.3. Player | makes move 6: u(4 : 6 : 9) = y(P')+y(P")+(3/2)y(S")+

u(p : s).
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A solution of the linear optimization problem is

y(2) =1,
2
y(P') =0 y(S’)=a, y(R') = -,
y(P)=0, y(S)=1
(P =5, y(S") = =, yR')=—
3’ 18’ 18’
oy _ 1 oy 1
y(P) =35, ¥ =3,
o T v T
u(p: s) 5 u(p' 1 s) = T
a0y 13 toal ol — L
u(4.6.9)-8, u(d :6 :9) = T
1
’U.(]:—g.

Thus player 2 has the following minimax strategy, which limits the
winning expectation of player 1 to —1/8:

e if player 1 opens with a bid of 6, then player 2, if holding a high card,
sees with probability 2/9 and raises with probability 7/9. With a low
card player 2 passes with probability 1/3 in response to the opening
bid of 6, sees with probability 5/18, and raises with probability 7/18.

e if player 1 opens with a bid of 9, then player 2 passes holding a low
card and sees holding a high card.

Analogously, one can compute a minimax strategy for player 1:

e with a high card, open with a bid of 6 with probability 1/3 and
otherwise with a bid of 9.

e with a low card, open with a bid of 6 with probability 1/3, and
otherwise with a bid of 9.

e after an opening bid of 6 that is raised by player 2 to 9, always see
with a high card and always pass with a low card.

One should keep in mind that behavioral strategies do much more than
simplify the description of minimax strategies. Minimax behavioral strate-
gies can also be determined directly from the solution of a linear optimiza-
tion problem for a two-person zero-sum game with perfect recall. Here
the scope of the optimization problem is relatively moderate. In particu-
lar, both the number of variables and the number of inequalities can be
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bounded by the number of parameters that are necessary for character-
izing a pair of behavioral strategies. The class of games for which the
calculation of minimax strategies is actually realizable is thus significantly
enlarged (see Note 3 at the end of the chapter). The most complex min-
imax calculations to date were accomplished by Daphne Koller and Avi
Pfeffer.!” Using a descriptive language that they invented called GALA
and linear optimizations of realization weights, they analyzed poker mod-
els with up to 140000 configurations. In terms of the parameters of the
poker model, this corresponds to the following bounds:

e deck of 127 cards, one card per player, 1 round.
e deck of 3 cards, one card per player, 11 rounds.

¢ deck of 11 cards, five cards per player, 3 rounds.

If perfect memory is lacking for a two-person zero-sum game, then the
calculation of minimax strategies can be much more difficult, since the
search over the behavioral strategies must be extended. Koller and Megiddo
indeed show that in the general case, the calculation of minimax strategies
is NP hard with respect to the size of the game tree.!! Therefore, one may
assume that there is no general algorithm with which a minimax strategy
can be efficiently determined from the data of the game tree.

Chapter Notes

1. Daphne Koller, Nimrod Megiddo, Finding mixed strategies with small sup-

ports in extensive games, International Journal of Game Theory 25, 1996,
pp. 73-92, Theorem 2.6.
In principle, they use a purely dimensional argument, in which the real-
ization weights are used to determine the number of relevant parameters
relating to the strategic influence of a player. There can clearly be at most
as many of these as the dimension of the set of all realization plans for the
player in question, and this dimension is obtained by adding to each of the
player’s information sets the number of possible moves reduced by 1.

0Daphne Koller, Avi Pfeffer, Generating and solving imperfect information games,
in: Proceedings of the 1fth International Joint Conference on Artificial Intelligence,
Montreal 1995, volume 2, pp. 1185-1192; Daphne Koller, Avi Pfeffer, Representations
and solutions for game-theoretic problems, Artificial Intelligence 94, 1997, pp. 167-215.

1 Daphne Koller, Nimrod Megiddo, The complexity of two-person-zero-sum games in
extensive form, Games and Behavior 4, 1992, pp. 528-552. In this paper, Koller and
Megiddo construct special two-person zero-sum games in which one of the two players
does not possess perfect recall. In this class of games, the question whether a player can
be certain of achieving a specified score via a mixed strategy is NP hard.
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In many games, the dimension of the realization plans is significantly
smaller than the universal bound that is oriented to the number of end
nodes. Thus in le Her one can describe white’s realization weights with 13
parameters. The same holds for black, if one excludes obviously dominated
moves that relate to the situation in which white has previously exchanged.
In the sequel each le Her player possesses a minimax strategy that contains
at most 13 pure strategies.

That mixed strategies are strategically equivalent when they exhibit equal
realization plans was proven in 1969 by Yanovskaya: Ye.B. Yanovskaya,
Quasistrategies in positional games (in Russian), [zvestiya Akademii Nauk
SSSR Tehnicheskaya, Kibernetika 1, 1970, pp. 14-23; English translation
in Engineering Cybernetics 1, 1970, pp. 11-19; see also Mathematical Re-
views 43, 1972, #2995,

. A precise derivation is based on transforming the requirements of an op-
timal counterstrategy into a linear optimization problem and then investi-
gating the dual optimization problem to the one so derived. (Sufficiently
detailed descriptions of this duality can be found in many books on linear
optimization.)

One begins with the sequential form of a game whose data form a matrix
A. Using this matrix, one can calculate the winning expectation z' Ay from
realization plans that appear as column vectors = and y. The requirements
on the realization plans have the form

Er=e, x>0
Fy=f y=0.

Here e and f are column vectors of suitable dimension whose coordinates,
except for the first, which is equal to 1, are equal to zero.

One may now characterize for player 1 the optimal counterstrategy with
respect to an arbitrary but fixed realization plan y for player 2 by means of
a realization plan x that solves the following linear optimization problem:

z'(Ay) = max!,
Er=ce,
x> 0.

The dual optimization problem to this one whose minimum is equal to the
maximum of the original optimization problem is

u'e = min!,
E'u > Ay.
In comparison to the original optimization problem, this dual problem has

the advantage that it can be studied relatively easily for all possible real-
ization plans y. Therefore, it can be used to determine player 2’s minimax
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strategy:

u'e = min!,
E'u> Ay,
Fy=1f,
y = 0.

As a special case this yields the optimization problem as it was posed for
the example of the poker model “bid-raise-see.”

3. The construction of linear optimization problems can be accomplished com-
pletely formally, as we saw previously. The starting point for the examples
introduced in Chapters 39 through 41 was an object-oriented implementa-
tion of the corresponding configurations with methods such as

NumberofMoves: the number of moves, where for end configurations
the value is 0.

ToMove: returns the player whose turn it is to move (player 1, player
2, or chance).

Move (MoveNumber, Prob): generates a new instance of a conﬁgu-
ration corresponding to the configuration reached on the move. For
random moves, the move probability Prob is returned.

InformationSet: returns—except for end configurations and before
random moves—the current information set in the form of a unique
name (String).

Score: for end configurations returns the score of player 1.

This already suffices for an implementation of the algorithms described for
calculating minimax strategies.
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Baccarat: Draw from a Five!

Should a baccarat player whose first two cards total five request another
card?

The game of baccarat—also known as chemin-de-fer—with its over 500
year history, is the most widespread casino card game after blackjack.! As
with blackjack, the game is usually played with several decks of cards. To
win, a player must draw a higher hand than that of the bank; equal hands
result in a draw. The values of the cards are as follows: the ace has value
1, cards 2 through 9 have their face values, and face cards count zero. The
card values are summed modulo ten. Thus an 8 and a 6 total 4, while a
jack and an ace total 1.

A game of baccarat begins with the player and banker each receiving
two cards face down, which are not revealed to the other player. If either
player has a hand worth 8 or 9, then both players show their hands and the
game is scored. Otherwise, the player decides whether he wishes to have
an additional card dealt. If he chooses to receive a card, it is dealt face up.
Then it is the banker’s turn. He, too, is allowed to receive a third card,
where in making his decision he can take into account his own hand, the
decision of the player, and the exposed card if such exists. At this point
the game is over; banker and player reveal their hands, and the game is
scored.

Let us consider the odds of this game at first from a purely intuitive
point of view. The player and the bank have a choice about an additional
card only when both original two-card hands have values in the range 0

1John Scarne, Complete Guide to Gambling, New York 1974, pp. 459-479.
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Banker’s Hand | Player’s Third Card: Banker...
...Draws | ...Does Not Draw
0-2 N, 0-9 —
3 N,0-7,9 8
4 N, 2-T 0,1,89
5 N, 4-7 0-3,8,9
6 6-7 N, 0-5, 8,9
7 - N, 0-9
8-9 — Banker shows hand!

Table 42.1. Banker's strategy as usually prescribed in casino play. Here “N" represents
the case that the player has not elected to receive a third card.

to 7. To obtain the best possible hand, player and banker should draw a
third card from low hands, while with a hand of 7 or perhaps a bit below,
they should refrain from drawing. But the player in particular should
consider that with his decision he gives the banker an idea of the value
of his original hand. Since the third card is dealt open, these indications,
even if only within certain limits, can be extrapolated to the value of the
entire hand. Thus the banker can adjust his strategy to the extent that
the player’s actions provide information about his original hand.

The way baccarat is played in casinos, a number of wagerers can bet on
the outcome of the game. Therefore, the player and banker are quite limited
in the decisions that they are permitted to make, with this limitation of
course in the respective party’s favor. Thus the player must take a third
card if his hand totals 4 or less, while he may not draw if the hand is worth
6 or 7. Only for a hand of 5 is he allowed to choose. The hanker’'s strategy
is more complex, since in addition to his own hand, the player’s decision
and the value of a possible exposed card must be taken into account. The
banker’s permissible choices are shown in Table 42.1.

Like blackjack, baccarat is almost symmetric, so that the advantage
held by the banker is not immediately apparent. In blackjack, the bank’s
advantage lies in the fact that the player must draw first and risks going
bust with a hand over 21, while in baccarat the advantage lies solely in the
banker’s increased amount of information: the banker knows the player’s
decision, which allows an indirect conclusion about the hand; he also knows
the value of the exposed third card. Therefore, the banker has available a
more nuanced reply to the game situation.

In contrast to blackjack, the role of the banker in baccarat is generally
not taken by a casino employee. Instead, the players rotate this func-
tion among themselves, whence the name chemin-de-fer. For managing
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the game the casino takes five percent of the winnings that the banker
achieves.
There are several variants to the rules of baccarat:

e there can be two players, each with his own hand, who play against
the bank. The banker must attempt to maximize its decision about
a third card based on the decisions, open cards, and wagers of both
players.?

e in principle, the player, and above all, the banker, can be allowed
to make their choices as to a third card freely, at least when each is
playing only for himself. Banker and player are then engaged in a
two-person zero-sum game without perfect information in which the
optimal strategies may perhaps be mixed.

An early investigation of baccarat is contained in a book by Bertrand
that appeared in 1889. Although this study left rather much to be desired,
it nevertheless served Borel as a useful introductory example.? The game-
theoretic problem underlying the second of our baccarat variants was solved
in 1957 by John Kemeny and Laurie Snell.* They begin with two strategies
for the player, determined by his behavior with a hand of 5, and a total
of 2% strategies for the bank, characterized by its 8 x 11 information sets.
The large number of information sets results from the combination of eight
possible values that the bank can obtain with its first two cards—other than
the case of a game-ending 8 or 9—and the ten possible card values that the
player can draw as third card; the 11" possibility represents the case that
the player declines a third card. For the sake of simplicity, they assume
an infinite deck of cards, so that cards already drawn do not influence the
probabilities for further cards to be drawn.®

With the method of iteratively extended strategy selection, which we
have discussed in the previous two chapters, the astronomical number of

2This variant, called baccarat-en-banque or baccarat 4 deux tableaux, is investigated
in Sherry Judah, William T. Ziemba, Three person Baccarat, Operations Research Let-
ters 2 1983, pp. 187-192. For more on the game, see the cited work of John Scarne,
pp. 478-479.

3See Chapter 33.

4John G. Kemeny, J. Laurie Snell, Game-theoretic solution of Baccarat, American
Mathematical Monthly 64, 1957, pp. 465-469. See also Richard A. Epstein, The Theory
of Gambling and Statistical Logic, New York 1977, pp. 193-196.

5This assumption is not made in F.G. Foster, A computer technique for game-
theoretic problems I: Chemin-de-fer analysed, The Computer Journal 7, 1964, pp. 124
130; reprinted in David N. L. Levy, Computer Games II, New York 1988, pp. 39-52.
See also M. G. Kendall, J. D. Murchland, Statistical aspects of the legality of gambling,
Journal of the Royal Statistical Society, Ser. A 127, 1964, pp. 359-391.
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bank strategies does not come into play. After only a few steps, the pro-
cedure terminates with, depending on the initial strategies, for example,
2 x 5 strategies, and returns the following minimax strategies:

¢ the player takes a third card on 5 with probability 9/11 and declines
with probability 2/11.

e the bank’s strategy corresponds almost completely with the fixed
strategy tabulated above. The only exception is the situation in which
the player does not choose a third card and the bank has a hand worth
6. Then the bank draws a third card with probability 0.3754.

The game value reflects the bank’s slight advantage: it is —0.0128.

Further Mathematical Publications on Baccarat

(1] Edward O. Thorp, William E. Walden, A favorable bet in Nevada Baccarat,
Journal of the American Statistical Association 61, 1966, pp. 313-328.

(2] Edward Thorp, William Walden, The fundamental theorem of card counting
with applications to trente-et-quarante and baccarat, International Journal
of Game Theory 2, 1973, pp. 109-119.

(3] Edward Thorp, The Mathematics of Gambling, Hollywood 1984,
pp. 29-39.
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Three-Person Poker:
Is It a Matter of Trust!

Three players are playing poker. Can two players requlate their play so as
to disadvantage the third player without cheating?

All the games without perfect information that we have thus far considered
have been two-person zero-sum games. Even the games with perfect in-
formation that we looked at in Part II were almost exclusively two-person
zero-sum games. The only exception was a three-person nim variant that
was mentioned in Chapter 20 to point out the main differences between
two-person and many-person games. Starting with any configuration of
this nim variant, a strategy could be found for each of the three players
that together formed an equilibrium.

Such an equilibrium is generally characterized by the fact that no single
player can improve his situation by changing his strategy unilaterally. The
strategy of each player is thus optimal to the extent that it represents his
best reply to the announced strategies of his opponents. If one assumes that
every player is aware of the fact that each player attempts to maximize his
own advantage, then a certain stability can be assumed to exist for this
equilibrium. Conversely, situations in which the opposing strategies do not
form an equilibrium are characterized by the fact that at least one player
has cause to be dissatisfied with his strategy. This yields the following
consequence: if there is a common method of play among experienced
players, then this corresponds to an equilibrium.

450
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If one of the players makes an “error,” then the supposed stability of an
equilibrium disappears. Here the player who has “erred” is not necessarily
the only player to suffer a loss vis-a-vis the result of the game associated
with the equilibrium, and so it is, in fact, possible that the player whose
play has deviated from the equilibrium has not actually made an error.
That is, the player may not have accidentally acted contrary to his own
interests. It is conceivable that he has acted quite consciously against his
own interests in order to achieve a larger total win in concert with another
player, so that the pair together thereby achieve a more attractive net
result.

In contrast to two-person zero-sum games, the score corresponding to
an equilibrium does not represent a guaranteed achievable expectation.
Furthermore, the certainty that exists in two-person zero-sum game expe-
riences here yet a further restriction: a game can in general possess several
equilibria with varying game results. Thus it is not obvious that the result
of a game will be that corresponding to a particular equilibrium.

However, if one is prepared to accept these two limitations, then Zer-
melo’s theorem and von Neumann’s minimax theorem can be generalized
in a weaker form to arbitrary finite many-person games, including those
without zero-sum character. Both theorems were discovered in 1950:

¢ in a game with perfect information, each player possesses a pure
strategy, and these together form an equilibrium.

e in a game without perfect information, there exists for each player a
mixed strategy, and these together form an equilibrium.

The first theorem is that mentioned in Chapter 20, which goes back to
Kuhn. Starting with the extensive form of a game, such strategies can be
constructed recursively move by move in the reverse order of the game’s
chronology.

The second theorem is the Nash equilibrium theorem, which the 21-
year-old John Nash proved in his dissertation and for which he received
the Nobel Prize in economics over 40 years later.! John Harsanyi (1920—
2000) and Reinhard Selten (1930-), who further developed the concept of a

1John Nash, Equilibrium points in N-person games, Proceedings of the National
Academy of Sciences of the USA 36, 1950, pp. 48-49; John Nash, Non-cooperative
games, Annals of Mathematics 54, 1951, pp. 286-295; both articles are reprinted in
Harold W. Kuhn (ed.), Classics in Game Theory, Princeton 1997, pp. 34, 14-26. The
dissertation is essentially the same as the second-named publication. A facsimile of the
dissertation can be found in Harold W. Kuhn, Sylvia Nasar (eds.), The Essential Nash,
Princeton 2002, pp. 53-84. Background on the dissertation appears in Harold W. Kuhn
et al., The work of John F. Nash Jr. in game theory, Nobel Seminar & December 1994,
Duke Mathematical Journal 81, 1995/96, pp. i-v, 1-29; Sylvia Nasar, A Beautiful Mind:
A Biography of John Forbes Nash, Jr., New York 1998, Chapter 10. This book was the
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strategic equilibrium, were honored together with Nash.? Nash’s theorem
is a pure existence theorem, offering no method of actually obtaining such a
Nash equilibrium, as it is usually called, nor of determining whether there is
more than one (see Note 1 at the end of the chapter). Nash's theorem and
his concept of equilibrium form the basis of noncooperative game theory,
in which the rational behavior of players is studied under the assumption
that the players cannot make binding agreements about their behavior and
division of winnings. In economics, such models are useful in the theoretical
study of markets and prices, but how can they help us in real games that
people play?

Nash himself gave a simple example of an application to a game as
an appendix to his proof.® Since he sees the application of his concept
primarily to games in which the generally accepted customs of a fair game
contain a noncooperative manner of playing, Nash investigates a poker
game for three players. Because of its great complexity, Nash is forced to
restrict his attention to a very simple model:

e each of three players receives a card at random and with equal prob-
ability, either a high card or a low card. Moreover, each of the three
cards is drawn independently of the others. Each player knows only
his own card.

e for the bidding, which is open, there are two levels; whoever wishes
to raise the ante of 1 to 2 may do so.

e in the first round of bidding the three players have the chance in turn
to open with a bid of 2. If no one does so, the players receive their
antes of 1.

e once a player has opened, the two other players have the opportunity
to match the bet or pass. Then the game is over and the scoring
begins: the entire stake is split evenly among those players who bet
2 units and hold the comparatively highest cards.

basis of the film A Beautiful Mind, which received four Oscars in 2002, including best
film of 2001.

2Eric van Damme, On the contributions of John C. Harsanyi, John F. Nash and
Reinhard Selten, International Journal of Game Theory 24, 1995, pp. 3-11; Joachim
Rosenmiiller, Nobelpreis fiir Wirtschaftswissenschaften: die Spieltheorie wird hoffahig,
Spektrum der Wissenschaft 12, 1994, pp. 25-33; Bluffen und drohen, Der Spiegel 42,
1994, pp. 134-136.

38ee the 1951 work of Nash cited above. A more extensive and generalized (with
respect to the bidding levels) version of the poker model is described in J.F. Nash,
L. S. Shapley, A simple three-person poker game, in: H. W. Kuhn, A. W. Tucker (eds.),
Contributions to the Theory of Games [, Annals of Mathematics Studies 24, 1950,
pp. 105-116. For a particular bidding level this model also appears in Ken Binmore,
Fun and Games, Lexington 1992, pp. 593-601.
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Aside from the original random move, a game can last for five moves,
in which each of the first two players plays up to two times. Clearly, there
are moves that are dominated by others and therefore should not be used.
Thus a player with a high card would suffer an inevitable loss against
the maximum achievable were he to pass after another player had opened.
Aside from such situations, in the two rounds there remain the following
decisions to be investigated strategically. We give the yes—no decision to
be made as well as the information that the player possesses with respect
to the previous history of the game:

First Round:
Player 1:

¢ Open on a low card?

e Open on a high card?
Player 2:

e Open on a low card if player 1 didn't open?
e Open on a high card if player 1 didn’t open?

e Match the bet on a low card if player 1 opened?
Player 3:

e Open on a low card if players 1 and 2 didn’t open?
e Match the bet on a low card if player 2 opened?

e Match the bet on a low card if player 1 opened and player 2
passed?

e Match the bet on a low card if player 1 opened and player 2
matched the bet?

Second Round:
Player 1:

e Match on a low card if player 3 opened?
e Match on a low card if player 2 opened and player 3 passed?

e Match on a low card if player 2 opened and player 3 matched?
Player 2:

e Match on a low card if player 3 opened and player 1 passed?
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e Match on a low card if player 3 opened and player 1 matched?

How should the players behave? In particular, what does a Nash equi-
librium look like? Since the poker model is a game with perfect recall and
Kuhn's theorem on behavioral strategies holds for multiperson games, for
each equilibrium strategy there exists a strategically equivalent behavioral
stratgegy. In describing it, equivalent behaviors in different information
sets are treated together as much as possible:

Player 1:

e Does not open on a low card.
e Opens on a high card with probability 0.3084.

e Passes in the second round on a low card.
Player 2:

e Opens on a low card if player 1 did not open with probability
0.0441.

e Opens on a high card if player 1 did not open with probability
0.825T7.

e Passes on a low card if player 1 opened.

e Passes in the second round on a low card.
Player 3:

e Opens on a low card if no other player opened with probability
0.6354.

e Passes on a low card if another player has opened.

These three hehavioral strategies turn out to constitute the only Nash
equilibrium. The associated winning expectations of the three players are
—0.0735, —0.0479, and 0.1214.* Of particular interest is the fact that
players 1 and 2 do not always open on a high card, even though they are
at no risk of losing anything. This amounts to a reverse bluff, where the

4These values are in fact irrational numbers, so that in contrast to a two-person zero-
sum game, they cannot be calculated by means of a linear system of equations from the
game parameters. For example, the value for the second player is equal to

16 — /321

40 '
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player acts despite his high hand as though it were a bad one. Like a bluff,
this has the effect of revealing as little valuable information as possible
about his hand.

We would now like to consider how such Nash equilibria can be deter-
mined. For practical play they possess, for reasons that we have mentioned,
only limited value. But what conclusions can we draw from the three win-
ning expectations? Since Nash equilibria assume rational behavior and no
prior agreements between players, the three values, particularly since those
in the poker model are uniquely determined, can be seen as typical char-
acteristics of the game that express the winning prospects of the players.
In particular, one sees that the third player has an advantage. Whether he
can actually realize his positive expectation depends on how rationally his
opponents play. Do they play rationally, or does one of his two opponents
perhaps commit a blunder?

Less speculative, namely, without assuming the rational behavior of
the opponents, is the worst-case analysis. Here one attempts to maximize
the winning expectation of the player that is guaranteed regardless of the
strategies of the other two players. That corresponds to an analysis such
as we have seen for two-person zero-sum games, but now in competition
with a two-person coalition.

We begin with the third player, for whom we can suppose an advantage
due to the Nash equilibrium. In fact, player 3 can ensure himself an average
score of at least 1/64 against a coalition of players 1 and 2, who set their
strategies in common:

Player 3:

e Opens on a low card, when no other player has opened, with
probability 3/16.

e Matches bets on a low card when player 2 has opened with
probability 1/4.

e Passes on a low card if player 1 has opened.

The minimax behavioral strategy of the two cooperating players is the
following:

Player 1:

e Does not open on a low card.
e Opens on a high card with probability 3/4.

¢ Passes in the second round on a low card.




456 43. Three-Person Poker: Is It a Matter of Trust?

Player 2:

e Opens on any card if player 1 has not opened.
e Does not match on a low card if player 1 has opened.

e Passes in the second round on a low card.

With such cooperation, in which the two players agree on their behav-
ioral plans for the game, players 1 and 2 can greatly reduce their net loss in
comparison to that indicated by the Nash equilibrium. Are they cheating?
As Nash noted, such cooperation violates what is considered good manners
in poker and is unusual. Strictly speaking, though, there is no rule against
such coordinated plans. Every player can act in this coalition in a manner
in which he could act if playing alone. In particular, there is no illegal
exchange of information.

Player 1 acting alone has a worse minimax value than player 3 had. It
is —1/12. This expectation can be ensured with the following strategy:

Player 1:

e Does not open on a low card.
e Opens on a high card with probability 19/27.

e Matches in the second round on a low card if player 3 has opened
with probability 2/27.

e Passes in the second round on a low card if player 2 has opened.
The minimax strategy of the two cooperating players is as follows:
Player 2:

e Acts defensively on a low card; that is, he passes or opens ac-
cording to whether player 1 opened or not.

e Opens on a high card if player 1 did not open.

e Passes in the second round on a low card.
Player 3:

e Opens on a low card if no other player has opened with proba-
bility 2/3.

e Passes on a low card if another player has opened.
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Player 2 on his own has somewhat better prospects than player 1. The
winning expectation that the second player can attain is —5/88. The min-
imax strategy is as follows:

Player 2:

e Opens on a low card if player 1 did not open with probability
3/11.

e Opens on a high card if player 1 did not open with probability
7/11.

e Passes in the second round on a low card.

As we did in our investigation of the other two coalition constellations,
we would like to see how the cooperating players can limit the expectation
of player 2 to his minimax value. It can be seen that there is no behavioral
strategy that accomplishes this. The two partners must agree on a suitable
mixture of their total strategy. That is, to ensure their minimax value, the
partners require a cooperation that goes beyond agreeing on their decision
probabilities but making their individual moves independently. In the case
before us, what is required is rather a random decision made before the start
of the game that sets the common plan of the two coalition partners. There
are no strategically equivalent behavioral strategies; Kuhn's theorem is not
applicable, since it assumes perfect recall for the two cooperating partners,
and that is violated here.

A mixed minimax strategy for the cooperating players 1 and 3 looks
like this:®

Player 1:

e Does not open on a low card.
¢ Opens on a high card with probability 3/11.

e Passes in the second round on a low card.
Player 3:

e Opens on a low card if no other player has opened with prob-
ability 13/22, and in fact with conditional probability 13/16 in

5Since a calculation based on imperfect recall exceeds the range of the behavioral
strategies, the simplified algorithms that we have used in the previous chapters lead
only partially to the goal for coalitions in the poker model under consideration here.
With correspondingly high expenditure of effort, one can start directly with the normal
form; here dominated strategies can be omitted.
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the case that the strategy currently determined by chance for
player 1 does not call for an opening on a high card (see Note 2
at the end of the chapter).

e Passes on a low card if another player has opened.

The strategy described for an information set goes beyond what a be-
havioral strategy can offer: if players 1 and 2 did not open, then player 3
on a low card should not align his reaction to the strategy of his partner,
which has not become public knowledge. To be sure, player 3 knows that
his partner player 1 has not opened. But he does not know whether player 1
has made his decision based on his low card or on the 3 : 8 random decision
on a high card. To that extent, player 3, without additional information,
cannot mix his strategy as would actually be required in coordination with
the mixed strategy of his partner. It is necessary that both players he able
to use a random number in common to set their strategy.

The mixed minimax strategy of the coalition of players 1 and 3 makes
clear once again the central importance of information in a game and the
strategic losses that can arise from a restriction on the flow of information.
Since it is generally not allowed for a player to make statements about his
informational state, he can transmit his information at best indirectly: in
signaling, the information to be transmitted is passed in accordance with
the rules of the game, proceeding in the course of a maove in such a way
that the informational state of the receiving player is influenced. Put thus
abstractly, the matter sounds much more complicated than it really is in
practice. Thus in our poker model, player 1 cannot directly inform his
partner what card he is holding in his hand, but he can indirectly hint
at this information by using the decision, which will become known to his
fellow players, of opening or not. Of course, such a transfer of information
has its limitations:

e with each transmitted piece of information the course of the game
is influenced. Thus move alternatives are unsuitable for signaling if
they too greatly damage the winning prospects of the player.

e the information cannot necessarily be targeted. For example, a bid
made openly in a poker game is known to all players. Therefore,
moves must be weighed so that an opponent can derive the least
possible information from them. Thus a move that gives an opponent
information can turn out to be disadvantageous. Both moves that
could signal a partner and those that would positively influence the
prospects of the player whose move it is can be thus affected.




Strategic Games 459

Von Neumann and Morgenstern mentioned the phenomenon of signal-
ing in their monograph, referring to the familiar bidding conventions in
bridge,® for which there are various systems. Von Neumann and Morgen-
stern explain their very formal definition of signaling as a trick that passes
information indirectly. They distinguish two cases. In one case, informa-
tion is passed between one and the same “player,” that is, between members
of a coalition, while in the other, it is between two different players:”

In the first case—which, as we saw, occurs in Bridge—the inter-
est of the player ...lies in promoting the “signaling,” i.e., the
spreading of information “within his own organization.” The
desire finds its realization in the elaborate system of “conven-
tional signals” in Bridge. These are parts of the strategy, and
not of the rules of the game . .. and consequently they may vary,
while the game of Bridge remains the same.

In the second case—which, as we saw, occurs in Poker—the
interest of the player. ..lies in preventing this “signaling,” i.e.,
the spreading of information to the opponent. .. This is usually
achieved by irregular and seemingly illogical behavior... This
makes it harder for the opponent to draw inferences.

What forms of signaling are compatible with the spirit of the rules of
the game? Although this question cannot be answered with the methods of
mathematical reasoning, mathematical methods nonetheless give us some
indications of what might follow from particular sets of rules.

Let us summarize our results about the poker model. In the case that
players are allowed to cooperate and that they can even mix their strate-
gies in a common process, the poker model offers the following winning
prospects: the expectatations that each player can achieve on his own are
~1/12 = —0.0833, —5/88 = —0.0568, and 1/64 = 0.0156. This leaves
a remainder of 263/2112 = 0.1245 available as a “bonus” for a coalition
of two players, should it come into being, to capture and divide between
them. If no coalition is formed, and each player gives his “best” in the
sense of an all-around reasonable method of play, then, as implied by the
Nash equilibrium, each of the three players can increase his expectation.

SBridge is a card game played by four persons. The players sitting opposite play as
a team. In the first phase of the game there is a round of bidding for the number of
tricks that can be made. The bids allow for certain conclusions to be drawn about the
quality of the hands, and this is necessary so that the partner can decide what to bid
after evaluating his own hand.

7 John von Neumann, Qskar Morgenstern, Theory of Games and Economic Behavior,
Princeton 1944.
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The greatest increase is achieved by player 3, who can take home a full
85% of the bonus.

With our discussion of the three-person poker model we came into con-
tact with certain concepts and approaches that arise from the game theory
of multiperson games. We were able to see that the results obtained do
not exhibit the uniqueness that we had come to expect from two-person
zero-sum games. For the way in which usual types of games are played,
one thus obtains results that are of limited value. Perhaps, then, we should
not go further into the underlying concepts of game theory in the limited
scope of this book. We give a brief view of the situation in “The Theory
of Multiperson Games.”

The Theory of Multiperson Games

The effect of coalitions on the course of a game was first inves-
tigated in 1928 by John von Neumann. Von Neumann found
in the case of coalitions that the idea of stability that existed
in two-person zero-sum games could be carried over to multi-
person games at least in limited form. Thus for three-person
zero-sum games he analyzed the three possible coalitions that
two players could form against the third. If the two partners
act as a single player, then the minimax theorem holds. There
thus arise three minimax values, just as we have seen for our
poker model. Von Neumann writes:®

The three-person game is significantly different from
that for two persons. The methods of the individual
players fade in importance: They offer nothing new,
since the (necessarily occurring) formation of coali-
tions makes the game into a two-person game. But
the value of the game for a player depends not only
on the rules of the game, but much more on which of
the three equiprobable coalitions comes into being.
It makes itself felt in what is completely foreign to
the stereotypical and equalized two-person game: a
battle.

8 John von Neumann, On the Theory of Games of Strategy, in: Contributions to the
Theory of Games IV, Annals of Mathematics Studies 40, Princeton 1959; Werke: Band
IV, pp. 1-26.
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From von Neumann’s idea of studying multiperson zero-sum
games from the point of view of coalition scenarios there later
arose an independent branch of game theory called cooperative
game theory, in which every game is reduced to the data that
encompass every minimax value that an arbitrary coalition of
players can achieve against the remainder of the players.? Then,
exclusively on the basis of these data, which reflect the “power”
of the individual players, the possible coalitions are investigated
to establish conditions under which each participating player is
prepared to join a particular coalition rather than “seek his
fortune” in another union. In detail, this takes place using
various concepts based on the goals of the players given more or
less plausible fundamental assumptions. The first such concepts
were introduced in 1944 in von Neumann and Morgenstern’s
monograph.

So that the members of a particular coalition can decide how
their commonly earned winnings are to be divided, the game
and its environment must possess certain properties. Thus the
players must be able to communicate with one another, and
their total winnings must be both divisible and transferable.
Moreover, it must be ensured that agreements made are kept. It
is not only in games, but in economic applications as well, that
such assumptions about exogenous decision processes, that is,
those not covered by the rules, are often problematic. Depend-
ing on what assumptions are made, one unsurprisingly obtains
differing results.?

In contrast to cooperative game theory, the approaches to non-
cooperative game theory do not have to contend with game
processes that go outside the bounds of the rules of the game.
Although the name does not suggest it, coalitions are not ex-
cluded in noncooperative game theory. However, a coalition
can be formed only if the negotiations take place within the
confines of permitted moves.

9Formally, this approach leads to the so-called characteristic function that associates
with every coalition €' a minimax value v((’') that this coalition can achieve against
the rest of the players. That the strategic possibilities grow with larger coalitions finds
expression in the superadditivity of the characteristic function: if two subsets C' and D
of players contain a common element, then v(C' U D) = v(C) + v(D).

10 An overview of the various approaches to cooperative game theory can be found, for
example, in Chapter § of Manfred J. Holler, Gerhard Illing, Einfiihrung in die Spielthe-
orie, Berlin 1991.
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Nash equilibria in noncooperative game theory possess a funda-
mental significance. What is problematic is that there can exist
a number of inequivalent Nash equilibria. Although this ambi-
guity can never be completely eliminated, significant reductions
are possible by focusing on special equilibria as particularly
plausible. Criteria for these arise from a near-stability with
respect to small variations of the opposing strategies as well
as limits on scoring established in the rules of the game. For
games in extensive form, one can investigate all the decisions
to be made in the game on the basis of whether an equilibrium
strategy actually provides a good move for the player in ques-
tion: for configurations that cannot actually be encountered
using the strategies of the equilibrium this is not at all obvious.
The leading concepts of such a refinement of Nash equilibria
come from John Harsanyi and Reinhard Selten, who, as we
have already mentioned, shared the Nobel Prize in economics
with Nash. Despite all the refinements, the problem remains
that the behavior derived from a Nash equilibrium is optimal
only if the other players behave reasonably and competently.!?

Chapter Notes

1. Nash's proof rests on the idea that the players can modify their strategies
simultaneocusly in a way reminiscent of the fictitious series of games pre-
sented in Chapter 38. Here one investigates, from the perspective of the
individual players, a given combination that contains a mixed strategy for
each player: with what pure strategies could a player counter the opposing
strategies better than with the strategy mix that he is actually using? And
by how much could he thereby increase his winning expectation? Building
on this idea, Nash defines a transformation that calculates a new strategy
for all players simultaneously in which the probabilities are raised for the
pure strategies that for the affected player represent a better reply than the
strategy mix being used, while those of others are diminished. Using the

URefinements of the Nash equilibrium are discussed in Sections 3.7 and 4.1 of the
book by Holler and Iling cited above. More information can be found in Christian
Rieck, Spieltheorie, Einfihrung fiir Wirtschafts- und Sozialwissenschaftler, Wiesbaden

199:

3, Chapter 5; Roger B. Myerson, Game Theory, Cambridge 1991, Chapters 4 and 5.
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Brouwer fixed-point theorem, which had been used by John von Neumann
in his proof of the minimax theorem, one proves that this transformation
has a fixed point, which must represent an equilibrium of strategies because
of Nash’s concretely constructed formula.

Nash’s construction in which the players simultaneously transform their
strategies is not particularly complicated. Let us consider one of the
players—the transformation is analogous for the other players—who has
mixed his pure strategies si, 82, ..., 8m in proportions given by the proba-
bilities =y, T2, ..., Tm, wherez; > 0,7 =1,...,m, and z;+x2+ -+, = 1.
The player now compares his mixed strategy with the pure strategies to see
which pure strategies could have better countered the opponents’ strate-
gies. For a comparison, the score improvements ay,as,...,a, are calcu-
lated that the player could have achieved with the pure strategies instead of
his mixed strategy. For a pure strategy s; that worsens the state of affairs

with respect to the mixed strategy, the value a; = 0 is assigned. Nash’s
transformation now provides for the player’s mixing his strategies with
probabilties

T+ ap

l+ar+as+ +am’
T2 + a2
1+al+a2+"’+ﬂ'ru

N sy

T + Om
1+ﬂ'l+a2+"'+arul

The other players proceed analogously and simultaneously. Nash’s trans-
formation is clearly continuous. Since the set of all strategic combina-
tions corresponds to a higher-dimensional hypercube with boundary, the
Brouwer fixed-point theorem can be applied, which guarantees the exis-
tence of a fixed point. Such a point is a Nash equilibrium: from among the
strategies sy, Sz, ..., 8, that are contained with positive probability in the
current mix, the “worst” is selected, that is, the strategy that brings the
player the least winning expectation against the current opposing strate-
gies and therefore brings no improvement over his mix. For such a strategy
s; one has x; > 0 and a; = 0, so that the fixed-point property of the af-
fected coordinate immediately vields a; + az + -+ + @, = 0 and therefore
a1 = az = +++ = a,, = 0. That is, the player cannot increase his winning
expectation against the current opposing strategies.

Finally, we mention that the transformation need not be applicable for
computing an equilibrium using an iterative procedure, since the transfor-
mation can consistently increase the distance to an equilibrium.

An overview of computational methods for Nash equilibria can be found
in Richard D. McKelvey, Andrew McLennan, Computation of equilibria
in finite games, in: Hans M. Amman (ed.), Handbook of Computational
Economics, Amsterdam 1996, pp. 87—142.
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2. In general, it suffices to determine “globally” by chance only a portion
of the decisions contained in a mixed strategy. The random selection of
the other moves can follow “locally” conditioned on the globally made
decisions:

e under some circumstances, such decisions must be made globally, that
is, with a common random choice, whose information sets display the
character of a signal, by which is meant that the player whose turn it is
later apparently “forgets” his available knowledge or the move made,
for example, because the partner whose move comes later simply does
not obtain this information.

e if the decisions of the part of the strategy to be set globally are set,
then the moves in the other information sets can be chosen locally,
that is, on the basis of a suitable number of behavioral strategies.

See G.L. Thompson, Signaling strategies in n-person games, in: H. W.
Kuhn, A. W. Tucker (eds.), Contributions to the Theory of Games II,
Annals of Mathematics Studies 28, 1953, pp. 267-277; G.L. Thompson,
Bridge and signaling, ibid., pp. 279-289.
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QUAAK! Child’s Play?

Two players gamble according to the following rules: at the start of the
game, each player receives 15 chips, with which they play over several
rounds. In each round, each of the players takes a certain number of his
remaining chips in his closed hand; permitted are the numbers 0, 1, 2, and
3. After the two players have made their secret choices, they open their
hands and compare. If one player has more chips in his hand than his op-
ponent, he receives a point. After the round, the chips that were wagered
are set aside. A player wins when he succeeds in accumulating three points
more than his opponent. If that does not oceur, then the game is a draw.
What is the best strategy?

This game appeared in 1994 as a children’s game with the name QUAAK!!
The current game state is indicated by a playing piece in the form of a frog
that is moved back and forth over seven squares, representing the possible
point differences. Even those who have passed beyond the recommended
top age of twelve for this game might find some amusement in trying their
strategic talents in a few rounds of the game. And those who find the
principle of the game entertaining but would like a game with more variety
might like to try the game “Beat the Buzzard” by Alex Randolph.?

1Published by Otto Meier Verlag, Ravensburg. The author is Dirk Hanneforth.

2A game of Beat the Buzzard always last 15 rounds. Instead of chips, each player
obtains a pack of 15 cards with values from 1 to 15. Moreover, the number of points
that can be won in a round is not fixed, but is determined at the start of each round
by drawing a card. There are 15 such cards altogether, so that the numbers of points
played for are always the same, but in a random order for each game. Additional special
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From the game-theoretic point of view, Quaak! is a two-person, nonran-
dom, zero-sum game with perfect recall, but without perfect information:
perfect information is lacking because the players move simultaneously.
Therefore, a player cannot evaluate fully the effect of his move at the time
the decision for that move is made. Since the opponent is faced with the
same uncertainty, each player has an interest in seeing to it that his decision
cannot be foreseen by the opponent. Thus a player would do well to make
his decision randomly. In particular, let us look for a minimax strategy,
which will allow a player to protect himself from a negative expectation,
which is possible due to the symmetry of the game. As a consequence of the
perfect recall, such a minimax strategy can be constructed in the form of
a behavioral strategy. This encompasses a probability distribution for the
possible moves for every informational state that can arise for a player in
the course of a game. Clearly, those informational states that are equivalent
in view of the further move possibilities despite various prehistories can be
combined. That is, it is simply the following three values that constitute
the determining parameters of an informational state:

=4

e the number of chips that remain to player 1: 0,1,...,15.

e the number of chips that remain to player 2: 0,1,...,15.

e the current score difference from the viewpoint of the first player: —2,
-1,0, 1, 2.

The fact of the existence of such an intermediate state is known to both
players; a player is uninformed only about the decision of his opponent that
is being made in parallel to his own. Thus an intermediate state such as
shown in Figure 44.1 can be seen as a closed partial game for which there
exists a uniquely determined minimax value. Using this approach, we can
determine the associated minimax values and the necessary strategies move
by move, where we do so as always in the reverse game chronology. In each
case, a minimax value for a given configuration must be determined only
for one double move. That is, the desired minimax value of a given configu-
ration is calculated as the solution of a linear optimization problem for the
minimax values of those configurations that can arise in a double move.
This is necessary for all configurations that can arise from the starting
configuration of the game.

One small peculiarity is the fact that in exceptional cases the game never
ends, namely, when both players continue to play zero chips even though

rules make the game even more complex. The two-person version can be analyzed by the
approach we take here for QUAAK! However, the intermediate states are so numerous
that one can hardly hope to undertake a complete analysis.
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game state indicator

O

player 1's  player 1 2 1 0 -1 -2 player2 player 2's
chips wins wins chips

Figure 44.1. QUAAK! configuration 6-7-1.

one of the players could win with a different decision. By evaluating a
certain number of repeated moves as a draw, the player who is ahead is
forced to abandon such defensive and completely unprofitable behavior. We
will go into this problem a bit further in our description of the calculations
to be made.

Let us begin with a simple situation in which each player has two chips
and the first player has almost won with a point advantage of 2:

game state indicator

= L O =

player i's  player1 2 1 0 -1 -2 player2 player2s
chips wins wins chips

Each player has three possible moves: 0, 1, or 2 chips. If the first player
chooses more chips than the second, he wins at once. If both players choose
two chips, then they have each “shot their wad,” and the game ends in a
draw. With one chip each the game also comes to a draw, since the second
player can avoid a loss by playing one chip on the next move. If the first
player plays no chips, but his opponent two, then the first player is assured
of a win in the next two moves. But if the second player plays exactly one
chip more than the first player, then the game ends in a draw. Altogether,
these not entirely obvious, but nonetheless not complicated, considerations
yield the normal form tabulated in Table 44.1.

Player 2 chooses

0 1 2
Player 1 0 0 1
chooses 1|1 0 0
1 1 0

Table 44.1. Normal form of a double move: each player has two chips left. The point
difference is 2.
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The entry missing from Table 44.1 represents the event that neither
of the two players plays a chip and the configuration remains the same.
In order to avoid an unending repetition of moves, one could declare the
game a draw if no chip is played a certain number of times. For the move
immediately before such a draw, one has the normal form

Player 2 chooses
0 1 2
Player 1 0] 0 0 1
chooses 1|1 0 0
211 1 0

which has a minimax value of 1/2. The first player chooses zero or one
chip with equal probability, while the second player decides equiprobably
between one or two chips. If the state of the game is two moves until the
game is called a draw, then the normal form that takes account of the value
1/2 just determined is given by

Player 2 chooses
0 1 2
Player 1 0| 1/2 0 1
chooses 1 1 0 0
2 1 1 0

Again the minimax value is 1/2, and the players can use the same mixed
strategy as in the move previously considered. Because of the stability just
achieved with the value 1/2, we do not consider further moves at a greater
distance from the “horizon” where a draw is called, and thus 1/2 is the
minimax value of the game with unchanged rules: thus in practice, this
kind of draw can be avoided in that the player who is ahead, player 1, has
no interest in deciding on a zero-chip move with probability 1.3

3Such recursive games have been investigated in general form by Everett: H. Everett,
Recursive games, in: H. W. Kuhn, A. W. Tucker (eds.), Contributions to the Theory of
Games III, Annals of Mathematics Studies 839, 1957, pp. 47-78, reprinted in Harold W.
Kuhn (ed.), Classics in Game Theory, Princeton 1997, pp. 87—118; R. Duncan Luce,
Howard Raiffa, Games and Decision, New York 1957, pp. 461-467.
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As our second example let us consider the configuration in which each
player has three chips left, and the first player is ahead by two points:

game state indicator

=[O =

playeri's  player1 2 1 0 -1 -2 player2 player2's
chips wins wins chips

Again, the first player wins at once if he plays more chips than his
opponent. The second player can avoid a loss only if he plays as many chips
as his opponent or one chip more. In the case that each player plays one
chip, we obtain the configuration that we just investigated, so that we can
take the just calculated minimax value of 1/2 as the winning expectation.
We thus obtain the following table:

Player 2 chooses

0o 1 2 3

Player 1 0 0 1 1
chooses 1|1 1/2 0 1
211 1 0 0

311 1 1 0

The omitted special case in which neither player plays a chip can be
solved as in the first example. That is, one begins with the normal form
entry in the upper left corner with the number 0, and then calculates the
minimax value and enters this value in the upper left corner of the normal
form, and so on. Again this iteration becomes stable from the second
minimax calculation, this time with a value of 3/5. Thus the first player
mixes his moves randomly in the proportion 1:2:0: 2, and the second in
the proportion 0 : 2 : 1 : 2. The normal form reflecting this move is then
the following:

Player 2 chooses

0 1 2 3

Player 1 0|3/5 0 1 1
chooses 1| 1 1/2 0 1
211 1 0 0

3 1 1 1 0
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Player | Plaver 1's Advantage (Five Times Chip Advantage Plus Six Times Point Difference)
s co=40,,=35.,=30, .25, .-20..-15..=10. ., aelbl 5 10, 1520,
Chips |

2 11 2.3222.,228...
3 33 3 Immm113222232

1 3mmmmml 3Im22233

5 Seammenman 3m2 2 2

3mm 3 Immmmmmm 3mmz Zmm33 3m3 3 3mm3 3mmm1 111

mmmmmrmrmmrmmranmmm 3 2mmm Immmmmm 1 1

T MIT TN S 3 menmommimm 1

Table 44.2. Minimax strategy: moves for player | without mixing; an “m” indicates a
mixed strategy.

On the whole, there is really nothing more to say, since the calculations
for additional configurations run completely analogously. The results are
so extensive that they cannot be reproduced here in their entirety. We
will restrict our attention to two aspects for which we give the minimax
behavior of the first player.?

Table 44.2 shows all configurations in which the first player does not
need to mix his moves for a minimax strategy. To be able to assemble the
large quantity of data into a table, the configurations are characterized in
a special way. In addition to the number of chips that player 1 still has,
a value is given that can be interpreted as a rough measure of the first
player's advantage. For this value, player 1's chip advantage is counted
five-fold, and the point difference six-fold, so that each configuration can
be uniquely characterized by the two parameters. The entries in the table
correspond to the configurations in which the first player can select a fixed
move as his minimax behavior. Where this is not possible, the letter “m”
appears, meaning that the first player must mix his possible moves to obtain
a minimax strategy. The empty entries are for configurations that cannot
arise from the starting configuration of 2 x 15 chips via minimax behavior
of the first player.

As Table 44.2 shows, the first player can avoid a random mixture of his
moves above all when a game is almost decided. If we take, for example,
the configuration in which with a point difference of —2 the first player has
six chips and his opponent a single chip. For the values 6 and 5 x (6 — 1)

40f course, from our results one could derive optimal moves for the second player as
well. To do this, using the symmetry of the game one has only to interchange the chip
numbers of the two players and change the sign of the point difference.




Strategic Games 471

+ 6 x (—2) = 13 for the measure of advantage, one sees in the table the
entry 1, and in fact, the choice of one chip is the optimal move for the first
player. If he plays no chip, then he can be threatened with an immediate
loss. On the other hand, every choice of more than one chip is pure waste,
which costs an otherwise certain victory.

Table 44.3 encompasses a portion of the configurations of Table 44.2
that are denoted by “m,” that is, configurations in which the first player
must mix his strategies to obtain a minimax strategy. Table 44.3 tabulates
all configurations in which the two players have up to a total of 13 chips
that can arise from the starting configuration of 2 x 15 chips via a strategy
of the first player. For each of these configurations are shown the minimax
value, probabilities of the moves, and the loss for the opponent that he can
expect on average from a wrong decision at the given move.

As can be seen from Table 44.3, the expected losses from incorrect play
allow for a sufficient number of “‘traps” in the game. A comparatively high
loss of 0.3690 with respect to the minimax value of (0.2074 is suffered by the
second player on average if he chooses three chips from the configuration
of 7 and 5 chips and zero point gap, as shown in the following figure:

game state indicator @

player1's  player1 2 1 0 -1 -2 player2 player2s
chips wins wins chips

By looking at the normal form, we can see why the move indicated in
the figure is so bad for player 2. It is necessary to iterate to determine the
top left value, and the iteration must be done several times:

Player 2 chooses
0 1 2 3

Player 1 0 | 0.2074 0.0000 1.0000 1.0000
chooses 1| 0.4455 0.1317 0.0000 1.0000
2 1 0.0000 0.3750 0.0000 0.0000
31 0.0000 0.0000 0.2338 0.0000

The normal form shows clearly that the minimax values achievable in
one move run between a draw and a win for the first player. The two
extreme values are achieved precisely when one player chooses at least two
chips more than his opponent and therefore pays too much, so to speak, for
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Chips of | Point | Minimax Player 1 Player 2

Player | Gap Value Probabilities Expected Loss

1 2 0 1 2 3 0 1 2 3
2 2] —2| —0.5000 0.5000 0.5000 0.5000

2 2 21 0.5000(0.5000 0.5000 0.2500

3 3 -2 —0.6000 0.4000 0.2000 0.4000 0.2000

3 3 2| 0.6000(0.2000 0.4000 0.4000]0.3200

3 41 —1]| —0.2338|0.3897 0.4676 0.1427 0.2338
3 4 21 0.5000(0.5000 0.5000]0.2500

4 31 —2| —0.5000 0.5000 0.5000 0.5000

4 3 1| 0.2338]0.2338 0.2986 0.4676 0.2986
4 41 =2| —0.6407 0.4690 0.1717 0.3593 0.0859

4 4 2| 0.6407|0.2814 0.3593 0.359310.2582

2 7 2] —0.3333|0.6667 0.3333 0.4444

4 5| -1 —=0.3750 0.6250 0.3750 0.2289 0.1875
4 5 21 0.5000(0.5000 0.1169 0.38310.2500

5 41 =2 —0.5000 0.5000 0.5000 0.2500

5 4 1| 0.3750]0.3750 0.6250 0.0781

7 2] -2 0.3333 0.3333 0.6667 0.6667

4 6 0] —0.1317|0.3512 0.5633 0.0855 0.1317
4 6 21 0.1895(0.8105 0.1895]0.1536

5 5] =2 —0.7593 0.3851 0.1335 0.4814 0.2941

5 5 2| 0.759310.2045 0.3141 0.481410.1915

6 41 =2 —0.1895 0.1895 0.8105 0.1895

6 4 0] 0.1317|0.1317 0.3050 0.5633 0.3050
3 8 2] —0.23080.3077 0.4615 0.2308]0.8521

5 6] —1| —0.4455 0.6386 0.1554 0.2060 0.0330
5 6 21 0.5000(0.5000 0.3750 0.1250]0.2500

6 5] —=2| —0.5000 0.5000 0.5000 0.1331

6 5 1| 0.4455]0.3158 0.1297 0.5545 0.0709

8 3 -2 0.2308 0.2308 0.1538 0.6154 0.3077

3 9 2] —0.3333|0.6667 0.3333]0.4444

4 8 1| —0.7165(0.3265 0.2482 0.4253 0.2012
5 7 0] =0.2074|0.3021 0.5531 0.1448 0.1736
5 7 21 0.2727(0.7273 0.2727]0.1983

6 6] —2| —0.8080 0.3462 0.1738 0.4799 0.2382

6 6] —1| —0.1778]|0.3557 0.2209 0.3557 0.0677

6 6 1| 0.1778(0.1778 0.1576 0.3557 0.3088

6 6 2| 0.8080(0.2129 0.3072 0.4799]0.1511

7 51 -2 —-0.2727 0.2727 0.7273 0.2210

i 5 0] 0.2074|0.2074 0.3690 0.4235 0.3690
8 41 —1] 0.7165]0.3686 0.4253 0.2062 0.2835
9 3 —2] 0.3333 0.3333 0.6667 0.6667

4 9 2| —0.1943|0.4172 0.3886 0.194310.6961

5 8 1| —0.0650(0.3133 0.4934 0.1934 0.0650
6 7| —1| —0.5210 0.6043 0.1657 0.2300 0.0589
6 7 21 0.6891(0.3782 0.6218]0.1933 0.1012

7 6] —2| —0.6891 0.3782 0.6218 0.2668 0.3109

7 6 1| 0.5210(0.3142 0.2069 0.4790 0.0493

8 51 —1] 0.0650]|0.2816 0.2251 0.4934 0.2916
9 41 =2 0.1943 0.2712 0.1317 0.5971 0.1756

Table 44.3. Minimax strategy for player | for which moves with up to 13 chips must
be mixed.
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his point. This is also plausible from the point of view that a choice of three
chips for either player is quite daring and is an extremely disadvantageous
decision against a minimax strategy of the opponent: the expected loss is
0.1736, respectively 0.3690, and the probabilities for the optimal move mix
are

e for player 1: 0.2074; 0.3690; 0.4235; 0.000;
e for player 2: 0.3021; 0.5531; 0.1448; 0.000.

One can make a significant error even in the first move, when each
player still has 15 chips. The normal form for the first move looks like this:

Player 2 chooses
0 1 2 3

Player 1 0 0.0000 —0.2474 —0.0570 0.0863
chooses 1 0.2474 0.0000 —0.2340 —0.0460
2 0.0570 0.2340 0.0000 —0.2230

3 | —0.0863 0.0460 0.2230 0.0000

Therefore, the players should begin by randomly mixing their possible
moves with the probabilities

0.1212, 0.2272, 0.0000, 0.6515.

Note that the choice of two chips already represents an error that lessens
the winning expectation by 0.0852 against the given minimax strategy, with
the winning expectation falling from 0.5 to 0.4574.
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Mastermind:
Color Codes and Minimax

To what extent can the “encoder” who chooses the color code in a game of
Mastermind influence the winning exzpectations of the game?

In Chapter 32, we optimized the search strategies for the game Mastermind
from two different points of view. We investigated the minimum number of
moves necessary to ensure that the code could be broken: in 6* Mastermind,
that is, for codes of length 4 with a choice of 6 colors, the number of
moves is five. We also minimized the expected number of moves under the
assumption that the code had been selected at random and equiprobably:
in 6* Mastermind, this minimum is 4.340 moves.

In both of these approaches, the character of Mastermind as a two-
person game comes into play little or not at all, due to the relatively passive
role of the encoder. Thus the question posed at the beginning of this
chapter opens up another point of view for our consideration. We begin by
describing Mastermind in the sense of a game-theoretic model.

Mastermind is a nonrandom two-person zero-sum game without per-
fect information, but with perfect recall. The encoder has a single decision
to make, at the start of the game, associated with a single one-element
information set. Much more complex in their structure are the decision
situations of the decoder. Each of his information sets reflects the previous
course of the game of which he is aware, namely, the questions posed and
their answers. Of greatest importance are not the details of the questions
and answers, but only the possible conclusions that can be drawn from

474
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them. In particular, for the decoder, the informational states are charac-
terized by the sets of codes that are compatible with the previous questions
and answers and are therefore still possible.

Due to the perfect recall, the mixed minimax strategies can be obtained
in the form of behavioral strategies. A further simplification of the mini-
max analysis can be derived from the symmetries that arise in Mastermind
due to the possible color and code positional permutations: if one were
first to find a minimax strategy that failed to respect all these symmetries,
one could then derive from it a symmetric minimax strategy by mixing the
asymmetric strategy with all the symmetric associated strategies that can
arise from it by permuting the colors and positions. Therefore, one can
restrict one of the two players to such symmetric strategies without harm.
This restriction leads to great simplifications for the opponent: if the en-
coder has selected his code with symmetrically distributed probabilities,
then the number of moves for decoding does not change if the opponent
modifies his search strategy with color and position permutations. That
is, such mutually transformable decoding strategies mutually dominate one
another and can thus be rejected except for one, which again greatly sim-
plifies the game.

If one has found minimax strategies in the twice simplified game, then
one can construct minimax strategies for the original game at once: here
the encoder’s symmetric strategy can be carried over without change. On
the other hand, the decoding strategy must be symmetrized; that is, it
is mixed with all of its “mirror images.”! That all of this sounds much
more complicated than it really is can be shown by examining a simple
Mastermind variant.

The game of 37 Mastermind, with its nine codes
11, 12, 13, 21, 22, 23, 31, 32, 33,

permits 3! = 6 exchanges of colors and an additional 2! = 2 exchanges
of position. Altogether, there are 3! x 2! = 12 symmetries. An encoder’s
symmetric strategy can be represented by the codes 11 and 12. Thus the
set of codes

11, 22, 33

and the set of codes

12, 13, 21, 23, 31, 32

1 A formal description of all this can be found in K. R. Pearson, Reducing two person,

zero sum games with underlying symmetry, Journal of the Australian Mathematical
Society, Ser. A, 33 1982, pp. 152-161.
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are selected with equal probability. If one restricts the encoder to symmet-
ric strategies, then the decoder can restrict his attention on his first move
to the guesses 11 and 12.

For calculating the minimax strategies for 3° Mastermind we can use
the techniques that we used in our investigations of le Her and baccarat,
where the amount of effort will be of about the same order of magnitude.?
For the reduced game one obtains the following minimax strategy:

e the encoder decides equiprobably between the two representatives
11 and 12. Thus the codes 11, 22, and 33 are chosen each with
probability 1/6, while the other codes, 12, 21, 13, 31, 23, and 32, are
chosen with probability 1/12 each.

e the decoder first guesses the code 12.

— If the reply is two black sticks, the decoder has arrived at his
goal.

— With no stick or two white sticks, the decoder can immediately
recognize the chosen code, namely, 33 or 21, respectively. The
decoder thus achieves his goal on the second move.

— With one white stick, 31 and 23 remain as possible codes. If one
of these, say code 23, is guessed on the next turn, then in the
worst case the goal is reached on the third turn.

— If the encoder answers with one black stick, then there remain
the four possibilities 11, 13, 32, and 22. On the second turn, the
decoder guesses code 11 with probability 3/4, and code 13 with
probability 1/4. Except for one case, namely, no stick as answer
to the guess 11, the game is over on the second or third turn.
In this one exceptional case there remain two codes, 22 and 32,
after the second turn, and the decoder guesses code 22 on the
third turn.

The game value, that is, the expected number of turns from the collision
of this pair of minimax strategies, can bhe easily calculated directly. One
simply goes through the nine existing codes and determines for each the
expected number of turns to guess it:

2In the work cited in the previous footnote, 32 Mastermind is reduced to a 2 x 5
matrix.
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Code | Expectation

11 Sx24ix3=12
22 $x3+1%x3=3
33 2

12 1

21 2

13 Sxda+ix2=1
31 $X2453x3=3
23 Ix2+3x3=2
32 Ix34+51x3=3

Thus the expected number of moves required for decoding is

! §+lx§=§x2.417.
6 4 12 2 12

And what does the minimax strategy for 6* Mastermind look like? It
is clear that the encoder’s minimax strategy can be described by five prob-
abilities, reflecting the mixing relationships for the classes of equivalent
codes that can be represented by the codes 1111, 1112, 1122, 1123, 1234,
These five codes also represent the choices that the decoder has for his first
move.

How information about the minimax value of 6* Mastermind could be
obtained at a significantly reduced cost over that of a complete minimax
analysis was shown in 1986 by Merrill Flood.? Flood began with search
strategies found in the course of other investigations whose authors had
attempted to minimize the expected number of moves for an equiprobably
distributed code.? Such a strategy can be slightly modified in a number of

3Merrill M. Flood, Mastermind strategy, Journal of Recreational Mathematics 18,
1985-1986, pp. 194-202.

Flood was one of the pioneers of game theory. In 1950, he invented, together with
Melvin Dresher, a very instructive 2 x 2 two-person game without zero-sum character
that was later given the name “prisoner’s dilemma” by Albert Tucker. In 1980, Robert
Axelrod organized a computer tournament for this game, to which he invited game
theorists to offer strategies for a series of games, where decisions could be based on
the outcomes of the previous games. However, one should note that such a series of
games, often called a supergame, has a significantly different character from that of an
individual game.

4These are the works of Knuth, Irving, and Neuwirth presented in Chapter 30. The
publication of Koyama and Lai mentioned in that chapter, whose results are significantly
better, appeared later.
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Expected Number of Moves in Strategies of
Code Class Flood Flood Flood Flood |Knuth Irving
Example Number | (Nr. 1) (Nr. 2) (Nr.3) (Nr.4)

1111 6| 3.8333 3.8333 3.8333 3.8333 | 4.1667 3.6667
1112 120 | 4.3667 4.3667 4.3667 4.3750|4.4500 4.3667
1122 90 | 4.3667 4.3778 4.3667 4.3667 | 4.4444 4.3667
1123 720 | 4.3681 4.3667 4.3667 4.3667 | 4.4833 4.3764
1234 360 | 4.3667 4.3667 4.3694 4.3667 | 4.4833 4.3667

1296 | 4.3650 4.3650 4.3650 4.3650 | 4.4761 4.3688

Table 45.1. The effects of Flood's modified search strategy.

ways without changing the expected number of moves. For example, this
can most easily be done by guessing one or another code first in situations in
which only two codes are possible. If such a strategy modification relates to
codes that are not symmetric to one another, then the two search strategies
will differ in their expected numbers of moves, which depend on the five
code classes. That is, depending on which code class the decoder has
chosen, either one or the other search strategy is slightly better suited for
decoding. The decoder thereby obtains a means of taking action against
the strategic influence of the encoder within this limited framework.

In detail, Flood determined for four variants of a search strategy the
conditional expectations for the number of moves in the five classes of
equivalent codes. These expectations are collected in Table 45.1, where for
comparison, the corresponding values for the strategies given by two other
authors are given.”

It can be seen clearly from Table 45.1 that four of the five code classes
can be recognized equally efficiently by their four Flood strategies. Flood
achieves a minimax-based improvement by randomly mixing his four de-
coder strategies in proportion 24 : 3 : 12 : 4, which corresponds to the
minimax strategy in the case that the decoder is allowed to use only these
four strategies; the encoder’s associated minimax strategy provides for a
random mix of the code classes in proportion 0:4:3:24:12.

The search strategy thus found for 6* Mastermind is not optimal. None-
theless, Flood’s approach is of great interest from the viewpoint of practical
play, since it provides the decoder with a relatively easily realizable strategy
that reduces the minimax value of 6 Mastermind to at most 4.3674. To
bound the minimax value more strongly from above in an analogous way,
the analysis must be repeated on a broader basis with additional good

58ince the strategies of Knuth and Irving were not more precisely specified due to
the nature of their original purpose, this was completed by Flood.
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search strategies, such as the strategy found by Koyama and Lai, which is
optimal for the expected number of moves, namely, 5625/1296 = 4.340.5

According to a 1995 newsgroup memo from Michael Wiener, the min-
imax value of 6* Mastermind is in fact 5600/1290 = 4.341. He obtained
the following minimax strategies using a computer calculation that took
several months:

e the encoder chooses his code equiprobably from among the 1290 codes
that contain at least two colors.

e the decoder plays exactly as specified by Koyama and Lai, by which
the encoder selects his code equiprobably from among all codes. In
particular, the decoder uses a pure strategy!

For the strategy found by Koyama and Lai, it remains to show that
one-color codes can be recognized in 25/6 moves on average. Since the
minimax value v corresponds to the conditional expectation that arises for
codes with at least two colors, it satisfies the equation

6 25 1290 5625
— — — ] —
1296 © 6 12060 1296’

which yields the value v = 5600,/1290.

GSee Chapter 32.
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